
本教程演示如何使用pandas在分组dataframe中根据日期条件智能填充`nan`值。通过结合`groupby().ffill()`实现组内前向填充,并利用`where()`方法根据`date`列与填充后的`closing date`进行比较,精确控制填充范围,从而解决仅在`date`小于或等于`closing date`时填充的需求。
在数据处理和分析中,我们经常会遇到需要填充缺失值(NaN)的情况。特别是在处理时间序列或分组数据时,填充逻辑可能需要结合其他列的值和分组信息。本教程将介绍一种高效且灵活的方法,利用Pandas的groupby()、ffill()(前向填充)和where()方法,实现在分组数据中根据日期条件智能填充特定列的NaN值。
假设我们有一个包含客户设备、日期和截止日期(Closing Date)的DataFrame。对于每个Customer-Equipment组,Closing Date可能只在第一行有值,而后续行是NaN。我们的目标是,将这些NaN值填充为该组内最近的有效Closing Date,但有一个关键条件:只有当当前行的Date小于或等于填充后的Closing Date时,才进行填充。如果Date超出Closing Date,则该行的Closing Date应保持为NaN。
以下是原始数据的一个示例:
| Customer-Equipment | Date | Closing Date |
|---|---|---|
| Customer1 - Equipment A | 2023-01-01 | 2023-01-05 |
| Customer1 - Equipment A | 2023-01-02 | NaN |
| Customer1 - Equipment A | 2023-01-03 | NaN |
| Customer1 - Equipment A | 2023-01-04 | NaN |
| Customer1 - Equipment A | 2023-01-05 | NaN |
| Customer1 - Equipment A | 2023-01-06 | NaN |
| Customer2 - Equipment H | 2023-01-01 | 2023-01-02 |
| Customer2 - Equipment H | 2023-01-02 | NaN |
| Customer2 - Equipment H | 2023-01-03 | NaN |
我们期望的输出结果如下:
| Customer-Equipment | Date | Closing Date |
|---|---|---|
| Customer1 - Equipment A | 2023-01-01 | 2023-01-05 |
| Customer1 - Equipment A | 2023-01-02 | 2023-01-05 |
| Customer1 - Equipment A | 2023-01-03 | 2023-01-05 |
| Customer1 - Equipment A | 2023-01-04 | 2023-01-05 |
| Customer1 - Equipment A | 2023-01-05 | 2023-01-05 |
| Customer1 - Equipment A | 2023-01-06 | NaN |
| Customer2 - Equipment H | 2023-01-01 | 2023-01-02 |
| Customer2 - Equipment H | 2023-01-02 | 2023-01-02 |
| Customer2 - Equipment H | 2023-01-03 | NaN |
首先,我们创建示例DataFrame并确保日期列为Pandas的datetime类型,以便进行正确的日期比较。
import pandas as pd
import numpy as np
# 原始数据
data = {
'Customer-Equipment': [
'Customer1 - Equipment A', 'Customer1 - Equipment A', 'Customer1 - Equipment A',
'Customer1 - Equipment A', 'Customer1 - Equipment A', 'Customer1 - Equipment A',
'Customer2 - Equipment H', 'Customer2 - Equipment H', 'Customer2 - Equipment H'
],
'Date': [
'2023-01-01', '2023-01-02', '2023-01-03', '2023-01-04', '2023-01-05',
'2023-01-06', '2023-01-01', '2023-01-02', '2023-01-03'
],
'Closing Date': [
'2023-01-05', np.nan, np.nan, np.nan, '2023-01-05', np.nan, # 注意:这里修改了原始问题中Customer1的2023-01-05为NaN,以更好地演示ffill
'2023-01-02', np.nan, np.nan
]
}
df = pd.DataFrame(data)
# 将日期列转换为datetime类型
df['Date'] = pd.to_datetime(df['Date'])
df['Closing Date'] = pd.to_datetime(df['Closing Date'])
print("原始DataFrame:")
print(df)解决此问题主要分为两个步骤:首先,在每个分组内对Closing Date进行前向填充;其次,根据Date列和填充后的Closing Date进行条件判断,保留符合条件的填充值。
ffill()(forward fill)方法用于将NaN值替换为前一个非NaN值。结合groupby(),我们可以确保填充操作仅在每个Customer-Equipment组内部进行,而不会跨组。
# 1. 对每个'Customer-Equipment'组进行前向填充
# 这一步会填充所有NaN,但我们后续会根据条件进行过滤
s_filled = df.groupby('Customer-Equipment')['Closing Date'].ffill()
print("\n经过ffill后的'Closing Date'系列:")
print(s_filled)执行此步骤后,s_filled系列将包含每个组内所有被前向填充的Closing Date。例如,Customer1 - Equipment A组的2023-01-02到2023-01-05的Closing Date都会被填充为2023-01-05。需要注意的是,如果一个组的Closing Date一直为NaN,或者其第一个有效值出现在较晚的日期,ffill()也会相应地处理。
前向填充可能导致某些行的Closing Date被填充,但其对应的Date已经超出了这个Closing Date(例如2023-01-06的Date超出了2023-01-05的Closing Date)。为了满足“仅在Date小于或等于Closing Date时填充”的条件,我们需要使用where()方法。
Series.where(cond, other=NaN)方法根据条件cond保留Series中的值。如果cond为True,则保留原值;如果cond为False,则替换为other(默认为NaN)。
在这里,我们的条件是s_filled.ge(df['Date']),即填充后的Closing Date大于或等于当前行的Date。
# 2. 使用where方法根据日期条件进行过滤 # s_filled.ge(df['Date']) 创建一个布尔系列,判断填充后的Closing Date是否大于等于当前Date df['Closing Date'] = s_filled.where(s_filled.ge(df['Date']))
通过这一步,s_filled中不满足Closing Date >= Date条件的那些值将被替换为NaN,从而实现了我们所需的条件填充逻辑。
将以上两个步骤整合到一起,形成完整的解决方案:
import pandas as pd
import numpy as np
# 原始数据
data = {
'Customer-Equipment': [
'Customer1 - Equipment A', 'Customer1 - Equipment A', 'Customer1 - Equipment A',
'Customer1 - Equipment A', 'Customer1 - Equipment A', 'Customer1 - Equipment A',
'Customer2 - Equipment H', 'Customer2 - Equipment H', 'Customer2 - Equipment H'
],
'Date': [
'2023-01-01', '2023-01-02', '2023-01-03', '2023-01-04', '2023-01-05',
'2023-01-06', '2023-01-01', '2023-01-02', '2023-01-03'
],
'Closing Date': [
'2023-01-05', np.nan, np.nan, np.nan, np.nan, np.nan, # 保持原始问题中的NaN,以便ffill更明显
'2023-01-02', np.nan, np.nan
]
}
df = pd.DataFrame(data)
# 将日期列转换为datetime类型
df['Date'] = pd.to_datetime(df['Date'])
df['Closing Date'] = pd.to_datetime(df['Closing Date'])
print("--- 原始DataFrame ---")
print(df)
print("\n" + "="*30 + "\n")
# 步骤1: 组内前向填充 'Closing Date'
# 这一步会填充所有NaN,但我们后续会根据条件进行过滤
s_filled = df.groupby('Customer-Equipment')['Closing Date'].ffill()
# 步骤2: 使用where方法根据日期条件进行过滤
# s_filled.ge(df['Date']) 创建一个布尔系列,判断填充后的Closing Date是否大于等于当前Date
df['Closing Date'] = s_filled.where(s_filled.ge(df['Date']))
print("--- 处理后的DataFrame ---")
print(df)输出结果:
--- 原始DataFrame ---
Customer-Equipment Date Closing Date
0 Customer1 - Equipment A 2023-01-01 2023-01-05
1 Customer1 - Equipment A 2023-01-02 NaT
2 Customer1 - Equipment A 2023-01-03 NaT
3 Customer1 - Equipment A 2023-01-04 NaT
4 Customer1 - Equipment A 2023-01-05 NaT
5 Customer1 - Equipment A 2023-01-06 NaT
6 Customer2 - Equipment H 2023-01-01 2023-01-02
7 Customer2 - Equipment H 2023-01-02 NaT
8 Customer2 - Equipment H 2023-01-03 NaT
==============================
--- 处理后的DataFrame ---
Customer-Equipment Date Closing Date
0 Customer1 - Equipment A 2023-01-01 2023-01-05
1 Customer1 - Equipment A 2023-01-02 2023-01-05
2 Customer1 - Equipment A 2023-01-03 2023-01-05
3 Customer1 - Equipment A 2023-01-04 2023-01-05
4 Customer1 - Equipment A 2023-01-05 2023-01-05
5 Customer1 - Equipment A 2023-01-06 NaT
6 Customer2 - Equipment H 2023-01-01 2023-01-02
7 Customer2 - Equipment H 2023-01-02 2023-01-02
8 Customer2 - Equipment H 2023-01-03 NaTdf = df.sort_values(by=['Customer-Equipment', 'Date'])
本教程展示了如何利用Pandas的groupby()、ffill()和where()方法,在分组数据中根据日期条件智能地填充NaN值。这种组合方法提供了一个强大且高效的解决方案,能够精确控制填充逻辑,确保数据处理的准确性。掌握这种模式对于处理复杂的缺失值填充场景至关重要。
以上就是Pandas教程:基于日期和分组条件智能填充DataFrame中的NaN值的详细内容,更多请关注php中文网其它相关文章!
每个人都需要一台速度更快、更稳定的 PC。随着时间的推移,垃圾文件、旧注册表数据和不必要的后台进程会占用资源并降低性能。幸运的是,许多工具可以让 Windows 保持平稳运行。
Copyright 2014-2025 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号