使用 Pydantic 进行复杂数据结构的验证

花韻仙語
发布: 2025-10-19 11:24:29
原创
636人浏览过

使用 pydantic 进行复杂数据结构的验证

本文介绍了如何使用 Pydantic 在 Python 中验证复杂的数据结构,特别是包含固定键名和特定类型列表的字典。通过定义 Pydantic 模型,并结合 `conlist` 类型,可以确保输入数据的结构和类型符合预期,从而提高代码的健壮性和可维护性。

Pydantic 是一个强大的 Python 库,用于数据验证和设置管理。它使用 Python 类型提示来定义数据结构,并在运行时强制执行类型约束。本文将重点介绍如何使用 Pydantic 验证具有特定结构的复杂数据,例如包含固定键名和特定长度列表的字典。

定义 Pydantic 模型

要验证复杂的数据结构,首先需要定义一个 Pydantic 模型来描述数据的形状。在给定的示例中,我们需要验证一个包含 filters 键的字典,该键的值是一个包含 simple 和 combined 键的字典。simple 和 combined 的值都是包含三个字符串的列表的列表。

我们可以使用 BaseModel 类来定义 Pydantic 模型。BaseModel 是所有 Pydantic 模型的基类。我们可以使用类型提示来定义模型的字段及其类型。

from pydantic import BaseModel, conlist
from typing import List

class SimpleCombine(BaseModel):
    simple :  List[conlist(str, min_length=3, max_length=3)]
    combined : List[conlist(str, min_length=3, max_length=3)]

class Filter(BaseModel):
    filters :  SimpleCombine
登录后复制

在上面的代码中,我们定义了两个 Pydantic 模型:SimpleCombine 和 Filter。

  • SimpleCombine 模型包含两个字段:simple 和 combined。这两个字段的类型都是 List[conlist(str, min_length=3, max_length=3)]。conlist 类型是 Pydantic 提供的类型,用于指定列表的最小和最大长度。在这种情况下,我们指定列表的长度必须为 3,并且列表中的所有元素都必须是字符串。
  • Filter 模型包含一个字段:filters。该字段的类型是 SimpleCombine,也就是我们刚才定义的模型。

使用 Pydantic 模型进行验证

定义了 Pydantic 模型之后,就可以使用它来验证数据了。可以通过创建模型的实例来验证数据。如果数据与模型的定义不匹配,Pydantic 将引发一个 ValidationError 异常。

即构数智人
即构数智人

即构数智人是由即构科技推出的AI虚拟数字人视频创作平台,支持数字人形象定制、短视频创作、数字人直播等。

即构数智人 36
查看详情 即构数智人
data = {
    "filters": {
        "simple": [["a", "b", "c"], ["d", "e", "f"]],
        "combined": [["g", "h", "i"], ["j", "k", "l"]]
    }
}

try:
    filter_data = Filter(**data)
    print("Validation successful!")
    print(filter_data)
except Exception as e:
    print(f"Validation failed: {e}")
登录后复制

在上面的代码中,我们创建了一个 Filter 模型的实例,并将 data 字典作为参数传递给构造函数。如果 data 字典与 Filter 模型的定义匹配,则会成功创建一个 Filter 模型的实例。否则,会引发一个 ValidationError 异常。

在 FastAPI 中使用 Pydantic

Pydantic 与 FastAPI 框架无缝集成。可以在 FastAPI 路由中使用 Pydantic 模型来定义请求体和响应体。

from fastapi import FastAPI
from pydantic import BaseModel, conlist
from typing import List

app = FastAPI()

class SimpleCombine(BaseModel):
    simple :  List[conlist(str, min_length=3, max_length=3)]
    combined : List[conlist(str, min_length=3, max_length=3)]

class Filter(BaseModel):
    filters :  SimpleCombine

@app.post("/validate")
async def validate_data(filter_data: Filter):
    return {"message": "Data is valid!", "data": filter_data}
登录后复制

在上面的代码中,我们定义了一个 FastAPI 路由 /validate,该路由接受一个 Filter 类型的请求体。FastAPI 会自动使用 Pydantic 来验证请求体。如果请求体与 Filter 模型的定义不匹配,FastAPI 将返回一个 HTTP 422 错误。

注意事项

  • Pydantic 模型是不可变的。这意味着一旦创建了模型的实例,就不能修改其字段的值。
  • Pydantic 模型可以使用 Python 类型提示来定义字段的类型。Pydantic 支持所有标准的 Python 类型,以及一些额外的类型,例如 conlist。
  • Pydantic 可以自动将数据转换为正确的类型。例如,如果将一个字符串传递给一个整数类型的字段,Pydantic 会自动将该字符串转换为整数。

总结

本文介绍了如何使用 Pydantic 在 Python 中验证复杂的数据结构。通过定义 Pydantic 模型,并结合 conlist 类型,可以确保输入数据的结构和类型符合预期,从而提高代码的健壮性和可维护性。Pydantic 与 FastAPI 框架无缝集成,可以在 FastAPI 路由中使用 Pydantic 模型来定义请求体和响应体。

以上就是使用 Pydantic 进行复杂数据结构的验证的详细内容,更多请关注php中文网其它相关文章!

最佳 Windows 性能的顶级免费优化软件
最佳 Windows 性能的顶级免费优化软件

每个人都需要一台速度更快、更稳定的 PC。随着时间的推移,垃圾文件、旧注册表数据和不必要的后台进程会占用资源并降低性能。幸运的是,许多工具可以让 Windows 保持平稳运行。

下载
来源:php中文网
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn
最新问题
开源免费商场系统广告
热门教程
更多>
最新下载
更多>
网站特效
网站源码
网站素材
前端模板
关于我们 免责申明 意见反馈 讲师合作 广告合作 最新更新 English
php中文网:公益在线php培训,帮助PHP学习者快速成长!
关注服务号 技术交流群
PHP中文网订阅号
每天精选资源文章推送
PHP中文网APP
随时随地碎片化学习

Copyright 2014-2025 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号