首页 > 后端开发 > C++ > 正文

C++如何使用C++ AMP或SYCL进行异构计算_C++异构计算与GPU/加速器编程

穿越時空
发布: 2025-11-14 00:23:31
原创
763人浏览过
C++ AMP已被弃用,推荐使用SYCL进行异构计算。SYCL基于标准C++,支持跨平台GPU加速,具有单源编程、广泛硬件兼容和活跃生态优势,是现代高性能计算的首选方案。

c++如何使用c++ amp或sycl进行异构计算_c++异构计算与gpu/加速器编程

在现代高性能计算场景中,利用GPU或其他加速器进行并行计算已成为提升程序性能的关键手段。C++ 提供了多种方式支持异构计算,其中 C++ AMPSYCL 是两个重要的编程模型,允许开发者使用标准 C++ 语法直接编写运行在 CPU 和 GPU 上的代码。

C++ AMP:微软推出的异构编程模型

C++ AMP(Accelerated Massive Parallelism)是微软为 Visual Studio 开发的一套基于 DirectX 的异构计算扩展,主要适用于 Windows 平台上的 GPU 加速。

特点:
  • 集成在 Visual Studio 中,依赖 DirectX 11 或更高版本
  • 语法简洁,使用 concurrency 命名空间中的 API
  • 仅支持 NVIDIA 和部分 AMD 显卡(通过 WDDM 驱动)
  • 目前已被弃用,不再推荐用于新项目
简单示例:
#include <amp.h>
using namespace concurrency;

std::vector<int> a = {1, 2, 3, 4};
std::vector<int> b = {5, 6, 7, 8};
std::vector<int> result(4);

array_view<const int, 1> av(4, a);
array_view<const int, 1> bv(4, b);
array_view<int, 1> rv(4, result);

parallel_for_each(rv.extent, [=](index<1> idx) restrict(amp) {
    rv[idx] = av[idx] + bv[idx];
});

rv.synchronize(); // 将结果从设备同步回主机
登录后复制

注意:restrict(amp) 表示该 lambda 只能在支持 AMP 的设备上执行,且只能调用有限的运行时函数。

SYCL:跨平台的单源异构编程标准

SYCL(发音为 “sickle”)是由 Khronos Group 推出的基于标准 C++ 的高级抽象层,可在 OpenCL、CUDA、HIP 等后端上运行,支持跨平台异构计算。

立即学习C++免费学习笔记(深入)”;

算家云
算家云

高效、便捷的人工智能算力服务平台

算家云 37
查看详情 算家云
优势:
  • 单源编程:主机和设备代码写在同一文件中
  • 完全基于标准 C++17/20,无需专用编译器扩展(但需要支持 SYCL 的编译器)
  • 支持 Intel、AMD、NVIDIA GPU 以及 CPU
  • 开源实现丰富,如 DPC++(Intel)、AdaptiveCpp(以前叫 hipSYCL)
基本结构示例(使用 DPC++):
#include <CL/sycl.hpp>
#include <vector>

namespace sycl = cl::sycl;

int main() {
    std::vector<int> a = {1, 2, 3, 4};
    std::vector<int> b = {5, 6, 7, 8};
    std::vector<int> result(4);

    sycl::queue q(sycl::default_selector_v); // 自动选择最优设备

    sycl::buffer<int, 1> buf_a(a.data(), sycl::range<1>(4));
    sycl::buffer<int, 1> buf_b(b.data(), sycl::range<1>(4));
    sycl::buffer<int, 1> buf_result(result.data(), sycl::range<1>(4));

    q.submit([&](sycl::handler& h) {
        auto acc_a = buf_a.get_access<sycl::access::mode::read>(h);
        auto acc_b = buf_b.get_access<sycl::access::mode::read>(h);
        auto acc_result = buf_result.get_access<sycl::access::mode::write>(h);

        h.parallel_for(sycl::range<1>(4), [=](sycl::id<1> idx) {
            acc_result[idx] = acc_a[idx] + acc_b[idx];
        });
    });

    q.wait(); // 等待任务完成
}
登录后复制

在这个例子中,数据通过 sycl::buffer 管理,自动在主机与设备间传输;内核函数以 lambda 形式传递给 parallel_for,由 SYCL 运行时调度到选定设备执行。

如何选择:AMP vs SYCL

虽然 C++ AMP 曾经提供了一种简单的 GPU 编程方式,但它已被微软停止维护,不再推荐使用。相比之下,SYCL 具有更强的可移植性和活跃的社区支持。

建议:
  • 新项目应优先考虑 SYCL,尤其是使用 Intel DPC++ 或 AdaptiveCpp
  • 若仅限 Windows 并需快速原型开发,可尝试遗留 AMP 项目,但不建议长期投入
  • 关注 ISO C++ 对 SYCL 的标准化进展(P2199 讨论中)

基本上就这些。SYCL 正在成为 C++ 异构计算的事实标准,结合现代编译器工具链,能有效发挥 GPU 和各类加速器的性能潜力。

以上就是C++如何使用C++ AMP或SYCL进行异构计算_C++异构计算与GPU/加速器编程的详细内容,更多请关注php中文网其它相关文章!

编程速学教程(入门课程)
编程速学教程(入门课程)

编程怎么学习?编程怎么入门?编程在哪学?编程怎么学才快?不用担心,这里为大家提供了编程速学教程(入门课程),有需要的小伙伴保存下载就能学习啦!

下载
来源:php中文网
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn
最新问题
开源免费商场系统广告
热门教程
更多>
最新下载
更多>
网站特效
网站源码
网站素材
前端模板
关于我们 免责申明 举报中心 意见反馈 讲师合作 广告合作 最新更新 English
php中文网:公益在线php培训,帮助PHP学习者快速成长!
关注服务号 技术交流群
PHP中文网订阅号
每天精选资源文章推送
PHP中文网APP
随时随地碎片化学习

Copyright 2014-2025 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号