0

0

Pandas中处理时间字符串转换:避免日期意外修改的策略

霞舞

霞舞

发布时间:2025-11-16 13:29:01

|

965人浏览过

|

来源于php中文网

原创

Pandas中处理时间字符串转换:避免日期意外修改的策略

在pandas中,将仅包含时间信息的字符串列转换为`datetime`类型时,`pd.to_datetime`函数会默认填充当前日期,导致原始日期信息丢失或错误。本文将详细介绍三种有效策略,包括字符串拼接、日期时间与时间差组合,以及数据源层面整合,以确保在转换过程中准确地保留或创建完整的日期时间信息,避免日期意外更改,从而维护数据完整性。

当我们在Pandas中处理时间数据时,经常需要将字符串格式的日期或时间转换为datetime类型,以便进行更高级的时间序列分析。然而,一个常见的陷阱是,当尝试将一个仅包含时间(如"11:38:36 AM")的字符串列直接转换为datetime对象时,pd.to_datetime函数会默认填充执行转换操作时的当前日期。这会导致原始数据中可能存在的日期信息被覆盖,或者在没有明确日期关联的情况下产生一个误导性的完整日期时间戳。理解这一行为的根本原因并掌握正确的处理方法,对于确保数据转换的准确性和维护数据完整性至关重要。

1. 策略一:字符串拼接后转换为日期时间

这种方法适用于日期和时间信息分别存储在不同列中的情况。核心思想是将日期列和时间列的字符串内容拼接成一个完整的日期时间字符串,然后对这个新生成的字符串列进行pd.to_datetime转换。

  • 实现步骤:

    1. 确保日期列和时间列都是字符串类型。
    2. 使用.str.cat()方法或简单的字符串加法将两列内容拼接,中间通常用空格分隔。
    3. 将拼接后的新列传递给pd.to_datetime。
  • 示例代码:

    绘蛙-创意文生图
    绘蛙-创意文生图

    绘蛙平台新推出的AI商品图生成工具

    下载
    import pandas as pd
    
    # 初始DataFrame
    data = {
        'order_details_id': [1, 2, 3, 4, 5],
        'order_id': [1, 2, 2, 2, 2],
        'order_date': ['1/1/23', '1/1/23', '1/1/23', '1/1/23', '1/1/23'],
        'order_time': ['11:38:36 AM', '11:57:40 AM', '11:57:40 AM', '11:57:40 AM', '11:57:40 AM'],
        'item_id': [109.0, 108.0, 124124.0, 117.0, 129.0]
    }
    df = pd.DataFrame(data)
    
    print("原始DataFrame:")
    print(df)
    print("\n原始数据类型:")
    print(df.dtypes)
    
    # 拼接日期和时间字符串,然后转换为datetime
    df['order_datetime'] = pd.to_datetime(df['order_date'].astype(str) + ' ' + df['order_time'].astype(str))
    
    print("\n拼接并转换后的DataFrame:")
    print(df)
    print("\n转换后的数据类型:")
    print(df.dtypes)
  • 优点: 直观易懂,操作简单。

  • 缺点: 涉及到字符串操作,对于非常大的数据集可能效率略低。需要确保日期和时间字符串的格式一致,以便pd.to_datetime能够正确解析。

2. 策略二:结合日期时间与时间差对象

这种方法更为优雅和高效,它利用了Pandas中datetime和timedelta对象的特性。首先将日期列转换为datetime对象,将时间列转换为timedelta对象(表示时间段),然后将两者相加,得到完整的datetime对象。

  • 实现步骤:

    1. 将日期列转换为datetime类型。
    2. 将时间列转换为timedelta类型。pd.to_timedelta可以解析各种时间字符串。
    3. 将转换后的datetime列和timedelta列相加。
  • 示例代码:

    # 假设df是上面的初始DataFrame,这里为了演示重新创建一份
    df_temp = pd.DataFrame(data)
    
    # 将order_date转换为datetime
    df_temp['order_date_dt'] = pd.to_datetime(df_temp['order_date'])
    
    # 将order_time转换为timedelta
    df_temp['order_time_td'] = pd.to_timedelta(df_temp['order_time'])
    
    # 将datetime和timedelta相加
    df_temp['order_datetime_combined'] = df_temp['order_date_dt'] + df_temp['order_time_td']
    
    print("\n结合日期时间与时间差后的DataFrame (中间步骤):")
    print(df_temp[['order_date', 'order_time', 'order_datetime_combined']])
    print("\n结合后的数据类型:")
    print(df_temp.dtypes)
    
    # 更简洁的方式,直接操作原始列
    df_concise = pd.DataFrame(data) # 重新创建df用于简洁演示
    df_concise['order_datetime'] = pd.to_datetime(df_concise.pop('order_date')) + pd.to_timedelta(df_concise.pop('order_time'))
    print("\n简洁方式处理后的DataFrame:")
    print(df_concise)
    print("\n简洁方式处理后的数据类型:")
    print(df_concise.dtypes)
  • 优点: 充分利用Pandas的类型系统,通常比字符串拼接更高效和健壮,尤其是在处理大量数据时。

  • 缺点: 理解timedelta的概念可能需要一点时间。

3. 策略三:数据源层面整合

最理想的情况是,在数据导入或生成时,就将日期和时间合并为一个完整的日期时间字符串列。这样,在Pandas中只需要对这一列进行一次pd.to_datetime转换即可。

  • 实现步骤:

    1. 确保数据源提供一个已经包含完整日期和时间信息的字符串列。
    2. 直接对该列应用pd.to_datetime。
  • 示例代码:

    # 模拟数据源中已合并日期时间的DataFrame
    data_combined = {
        'order_details_id': [1, 2, 3, 4, 5],
        'order_id': [1, 2, 2, 2, 2],
        'order_date_time_str': ['1/1/23 11:38:36 AM', '1/1/23 11:57:40 AM', '1/1/23 11:57:40 AM', '1/1/23 11:57:40 AM', '1/1/23 11:57:40 AM'],
        'item_id': [109.0, 108.0, 124124.0, 117.0, 129.0]
    }
    df_combined = pd.DataFrame(data_combined)
    
    print("\n数据源已整合日期时间的DataFrame:")
    print(df_combined)
    
    # 直接转换为datetime
    df_combined['order_dt'] = pd.to_datetime(df_combined['order_date_time_str'])
    
    print("\n直接转换后的DataFrame:")
    print(df_combined)
    print("\n直接转换后的数据类型:")
    print(df_combined.dtypes)
  • 优点: 最简洁、最不易出错的方式,减少了数据处理的中间步骤。

  • 缺点: 依赖于数据源的格式,不总是可行。

注意事项

  • pd.to_datetime的默认行为: 务必牢记,当pd.to_datetime接收到的字符串不包含日期信息时,它会默认填充当前日期。这是导致日期被“修改”的根本原因。
  • 格式指定: 如果日期或时间字符串的格式不标准,可以使用format参数明确指定解析格式,例如 pd.to_datetime(series, format='%m/%d/%y %I:%M:%S %p'),这有助于提高解析的准确性和效率。
  • 错误处理: 对于无法解析的日期时间字符串,pd.to_datetime默认会抛出错误。可以通过设置errors='coerce'参数,将无法解析的值转换为NaT(Not a Time),而不是中断程序。
  • 性能考量: 对于非常大的数据集,尽量避免不必要的字符串操作。策略二(结合日期时间与时间差)通常在性能上优于策略一(字符串拼接)。策略三(数据源整合)是最优的。

总结

在Pandas中处理日期和时间数据时,确保数据完整性至关重要。当日期和时间信息分散在不同的列中,或仅提供时间信息时,直接使用pd.to_datetime可能会导致日期被意外修改。通过本文介绍的三种策略——字符串拼接、结合日期时间与时间差、以及数据源层面整合——开发者可以有效地管理和转换日期时间数据,避免常见的陷阱。推荐优先考虑在数据源层面进行整合,或者在Pandas内部采用结合datetime和timedelta的方法,以实现更高效、更健壮的数据处理流程。理解pd.to_datetime的工作原理及其默认行为是避免这类问题的关键。

相关专题

更多
Python 时间序列分析与预测
Python 时间序列分析与预测

本专题专注讲解 Python 在时间序列数据处理与预测建模中的实战技巧,涵盖时间索引处理、周期性与趋势分解、平稳性检测、ARIMA/SARIMA 模型构建、预测误差评估,以及基于实际业务场景的时间序列项目实操,帮助学习者掌握从数据预处理到模型预测的完整时序分析能力。

51

2025.12.04

format在python中的用法
format在python中的用法

Python中的format是一种字符串格式化方法,用于将变量或值插入到字符串中的占位符位置。通过format方法,我们可以动态地构建字符串,使其包含不同值。php中文网给大家带来了相关的教程以及文章,欢迎大家前来阅读学习。

617

2023.07.31

python中的format是什么意思
python中的format是什么意思

python中的format是一种字符串格式化方法,用于将变量或值插入到字符串中的占位符位置。通过format方法,我们可以动态地构建字符串,使其包含不同值。本专题为大家提供相关的文章、下载、课程内容,供大家免费下载体验。

429

2024.06.27

js 字符串转数组
js 字符串转数组

js字符串转数组的方法:1、使用“split()”方法;2、使用“Array.from()”方法;3、使用for循环遍历;4、使用“Array.split()”方法。本专题为大家提供js字符串转数组的相关的文章、下载、课程内容,供大家免费下载体验。

253

2023.08.03

js截取字符串的方法
js截取字符串的方法

js截取字符串的方法有substring()方法、substr()方法、slice()方法、split()方法和slice()方法。本专题为大家提供字符串相关的文章、下载、课程内容,供大家免费下载体验。

206

2023.09.04

java基础知识汇总
java基础知识汇总

java基础知识有Java的历史和特点、Java的开发环境、Java的基本数据类型、变量和常量、运算符和表达式、控制语句、数组和字符串等等知识点。想要知道更多关于java基础知识的朋友,请阅读本专题下面的的有关文章,欢迎大家来php中文网学习。

1463

2023.10.24

字符串介绍
字符串介绍

字符串是一种数据类型,它可以是任何文本,包括字母、数字、符号等。字符串可以由不同的字符组成,例如空格、标点符号、数字等。在编程中,字符串通常用引号括起来,如单引号、双引号或反引号。想了解更多字符串的相关内容,可以阅读本专题下面的文章。

612

2023.11.24

java读取文件转成字符串的方法
java读取文件转成字符串的方法

Java8引入了新的文件I/O API,使用java.nio.file.Files类读取文件内容更加方便。对于较旧版本的Java,可以使用java.io.FileReader和java.io.BufferedReader来读取文件。在这些方法中,你需要将文件路径替换为你的实际文件路径,并且可能需要处理可能的IOException异常。想了解更多java的相关内容,可以阅读本专题下面的文章。

547

2024.03.22

java学习网站推荐汇总
java学习网站推荐汇总

本专题整合了java学习网站相关内容,阅读专题下面的文章了解更多详细内容。

6

2026.01.08

热门下载

更多
网站特效
/
网站源码
/
网站素材
/
前端模板

精品课程

更多
相关推荐
/
热门推荐
/
最新课程
10分钟--Midjourney创作自己的漫画
10分钟--Midjourney创作自己的漫画

共1课时 | 0.1万人学习

Midjourney 关键词系列整合
Midjourney 关键词系列整合

共13课时 | 0.9万人学习

AI绘画教程
AI绘画教程

共2课时 | 0.2万人学习

关于我们 免责申明 举报中心 意见反馈 讲师合作 广告合作 最新更新
php中文网:公益在线php培训,帮助PHP学习者快速成长!
关注服务号 技术交流群
PHP中文网订阅号
每天精选资源文章推送

Copyright 2014-2026 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号