Python中处理概率分布主要依赖scipy.stats和numpy。1. 离散型包括二项、泊松、几何和超几何分布,适用于整数取值随机变量;2. 连续型如正态、均匀、指数、伽玛、贝塔和对数正态分布,用于实数值变量;3. 多变量分布如多元正态分布,建模多变量联合分布;4. 自定义与经验分布可通过核密度估计和经验分布函数实现。scipy.stats提供pdf、cdf、rvs等统一接口,便于建模与推断。

Python中处理概率分布主要依赖于scipy.stats模块和numpy库,涵盖了几类常见的概率分布类型。以下是主要分类及常见示例:
适用于取值为整数或有限/可数集合的随机变量。
scipy.stats.binom
scipy.stats.poisson
scipy.stats.geom
scipy.stats.hypergeom
适用于在区间内可取任意实数值的随机变量。
scipy.stats.norm
scipy.stats.uniform
scipy.stats.expon
scipy.stats.gamma
scipy.stats.beta
scipy.stats.lognorm
用于多个随机变量联合分布的情况。
十天学会易语言图解教程用图解的方式对易语言的使用方法和操作技巧作了生动、系统的讲解。需要的朋友们可以下载看看吧!全书分十章,分十天讲完。 第一章是介绍易语言的安装,以及运行后的界面。同时介绍一个非常简单的小程序,以帮助用户入门学习。最后介绍编程的输入方法,以及一些初学者会遇到的常见问题。第二章将接触一些具体的问题,如怎样编写一个1+2等于几的程序,并了解变量的概念,变量的有效范围,数据类型等知识。其后,您将跟着本书,编写一个自己的MP3播放器,认识窗口、按钮、编辑框三个常用组件。以认识命令及事件子程序。第
3
立即学习“Python免费学习笔记(深入)”;
scipy.stats.multivariate_normal
当理论分布不适用时,可用数据构建经验分布。
scipy.stats.gaussian_kde
numpy排序后构造基本上就这些。根据数据特征选择合适分布,是建模和统计推断的基础。Python通过scipy.stats提供了统一接口:支持概率密度(pdf)、累积分布(cdf)、生成随机数(rvs)等功能,使用方便。
以上就是python的概率分布有哪些类型?的详细内容,更多请关注php中文网其它相关文章!
python怎么学习?python怎么入门?python在哪学?python怎么学才快?不用担心,这里为大家提供了python速学教程(入门到精通),有需要的小伙伴保存下载就能学习啦!
Copyright 2014-2025 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号