Collectors.groupingBy可用于Java中集合分组,支持单字段、多字段及条件分组,结合Stream API实现统计、求和、平均等聚合操作。1. 按部门分组得Map;2. 可嵌套Collectors.counting()、summingInt()、averagingInt()实现数量、总和、均值计算;3. 支持多级分组,如先按部门再按薪资高低分为High/Low;4. 分组键可自定义,如按姓名首字母或是否为管理员划分角色。核心是分组函数与下游收集器配合,灵活实现数据分类聚合。

在Java 8及以上版本中,Collectors.groupingBy 是处理集合数据分组的常用工具,配合 Stream API 可以高效实现数据的分类与聚合。它类似于 SQL 中的 GROUP BY 操作,支持按单字段、多字段、条件分组,并可嵌套聚合计算,如计数、求和、平均值等。
1. 基本分组:按字段分组
最简单的用法是根据对象的某个属性进行分组。假设有一个员工类:
class Employee {
String department;
String name;
int salary;
// 构造函数、getter 省略
}
将员工按部门分组:
Map> byDept = employees.stream() .collect(Collectors.groupingBy(Employee::getDepartment));
结果是一个 Map,key 是部门名称,value 是该部门所有员工的列表。
立即学习“Java免费学习笔记(深入)”;
2. 分组后聚合:统计数量、求和、平均值
使用 Collectors.groupingBy 结合其他 Collector 实现聚合操作。
云点滴客户解决方案是针对中小企业量身制定的具有简单易用、功能强大、永久免费使用、终身升级维护的智能化客户解决方案。依托功能强大、安全稳定的阿里云平 台,性价比高、扩展性好、安全性高、稳定性好。高内聚低耦合的模块化设计,使得每个模块最大限度的满足需求,相关模块的组合能满足用户的一系列要求。简单 易用的云备份使得用户随时随地简单、安全、可靠的备份客户信息。功能强大的报表统计使得用户大数据分析变的简单,
- 统计每组数量(类似 SQL 的 COUNT):
MapcountByDept = employees.stream() .collect(Collectors.groupingBy( Employee::getDepartment, Collectors.counting() ));
- 计算每组薪资总和:
MapsumSalary = employees.stream() .collect(Collectors.groupingBy( Employee::getDepartment, Collectors.summingInt(Employee::getSalary) ));
- 计算平均薪资:
MapavgSalary = employees.stream() .collect(Collectors.groupingBy( Employee::getDepartment, Collectors.averagingInt(Employee::getSalary) ));
3. 多级分组:嵌套 groupingBy
支持按多个条件分组,比如先按部门,再按薪资等级划分。
Map>> nested = employees.stream() .collect(Collectors.groupingBy( Employee::getDepartment, Collectors.groupingBy(e -> e.getSalary() > 8000 ? "High" : "Low") ));
得到的是一个两级 Map:第一层是部门,第二层是“High”或“Low”薪资分类。
4. 自定义分组条件
分组键可以是任意表达式。例如按姓名首字母分组:
Map> byInitial = employees.stream() .collect(Collectors.groupingBy(e -> e.getName().charAt(0)));
也可以用于条件归类,如将员工分为“管理层”和“普通员工”:
Map> byRole = employees.stream() .collect(Collectors.groupingBy(e -> List.of("Alice", "Bob").contains(e.getName()) ? "Manager" : "Staff" ));
基本上就这些。groupingBy 灵活且强大,掌握好能大幅简化集合处理逻辑。关键在于理解其两个参数:分组函数 和 下游收集器(downstream collector),后者决定了分组后的聚合行为。不复杂但容易忽略细节,比如类型推断和嵌套结构的泛型写法。









