并查集通过路径压缩和按秩合并优化,显著提升操作效率。1. 初始化每个元素父节点为自身,秩为0;2. 查找时递归压缩路径,使节点直连根;3. 合并时按秩挂载,小秩并入大秩,相等则任选根并增秩。此结构支持高效集合查询与合并,平均时间接近常数。

在C++中实现并查集(Disjoint Set Union, DSU)时,路径压缩和按秩合并是两个关键优化技术,它们能显著提升查找与合并操作的效率,使平均时间复杂度接近常数级别。
基本结构设计
并查集用于维护一组元素的划分,支持快速查找某个元素所属集合以及合并两个集合。核心是用数组存储每个节点的父节点。
初始化时,每个元素的父节点指向自己,表示独立集合。可以用一个vector保存parent信息,另一个记录每个集合的秩(rank),用于按秩合并。
示例结构:
vector
路径压缩(Path Compression)
在查找根节点的过程中,把沿途的所有节点直接连接到根,从而压平树结构。这样后续查找会更快。
立即学习“C++免费学习笔记(深入)”;
查找函数使用递归实现路径压缩非常简洁:
- 如果当前节点不是根(parent[x] != x),则递归查找根,并将parent[x]更新为返回值
- 最终返回根节点
这一操作让整条路径上的节点都指向根,极大减少未来查找深度。
代码片段:
int find(int x) {
if (parent[x] != x)
parent[x] = find(parent[x]);
return parent[x];
}
按秩合并(Union by Rank)
合并两个集合时,通过比较两棵树的秩决定挂载方向:将秩较小的树根连到秩较大的树根下。若秩相等,则任选一方作为新根,并将其秩加一。
这样做可以避免生成过深的树,控制整体高度。
- 找到两个元素的根
- 比较对应秩的大小
- 小秩向大秩合并
- 相同秩时更新新根的秩
void unite(int x, int y) {
int rx = find(x), ry = find(y);
if (rx == ry) return;
if (rank[rx]
parent[rx] = ry;
else if (rank[rx] > rank[ry])
parent[ry] = rx;
else {
parent[ry] = rx;
++rank[rx];
}
}
完整实现示例
封装成类更便于管理。构造函数初始化每个节点为独立集合。
假设处理n个编号从0到n-1的元素:
struct DSU {
vector
DSU(int n) {
parent.resize(n);
rank.resize(n, 0);
for (int i = 0; i
}
int find(int x) { ... }
void unite(int x, int y) { ... }
};
这个结构可在Kruskal算法、连通分量判断等场景中高效使用。
基本上就这些。路径压缩配合按秩合并,使得DSU的操作几乎是常数时间,适合大规模数据处理。注意两者结合效果最佳,单独使用任一优化也能带来明显提升。










