首页 > Java > java教程 > 正文

Java如何用ForkJoin实现数组并行求和_Java并行计算案例详解

P粉602998670
发布: 2025-11-22 10:49:02
原创
776人浏览过
ForkJoinPool适用于分而治之的并行计算,通过RecursiveTask实现数组求和,利用工作窃取算法提升性能。

java如何用forkjoin实现数组并行求和_java并行计算案例详解

在Java中,ForkJoinPool 是实现并行计算的重要工具,特别适合“分而治之”的任务模型。数组并行求和是典型的可拆分任务,非常适合使用 Fork/Join 框架 来提升性能。下面通过一个完整案例,详细说明如何用 ForkJoin 实现数组的并行求和。

1. ForkJoin 框架核心思想

ForkJoin 框架基于工作窃取(work-stealing)算法,将大任务拆分成小任务(fork),并由多个线程并行执行,完成后合并结果(join)。它适用于可以递归分解的计算密集型任务。

关键组件:

  • ForkJoinPool:线程池,负责调度 ForkJoinTask。
  • ForkJoinTask:任务抽象类,常用子类是 RecursiveTask(有返回值)和 RecursiveAction(无返回值)。

2. 实现并行求和:RecursiveTask 示例

我们继承 RecursiveTask<Long>,定义一个可拆分的求和任务。

立即学习Java免费学习笔记(深入)”;

import java.util.concurrent.ForkJoinPool;
import java.util.concurrent.RecursiveTask;
<p>public class ParallelSum extends RecursiveTask<Long> {
private static final int THRESHOLD = 1000; // 任务拆分阈值
private final long[] array;
private final int start, end;</p><pre class='brush:java;toolbar:false;'>public ParallelSum(long[] array, int start, int end) {
    this.array = array;
    this.start = start;
    this.end = end;
}

@Override
protected Long compute() {
    // 如果任务足够小,直接计算
    if (end - start <= THRESHOLD) {
        long sum = 0;
        for (int i = start; i < end; i++) {
            sum += array[i];
        }
        return sum;
    }

    // 否则拆分为两个子任务
    int mid = (start + end) / 2;
    ParallelSum leftTask = new ParallelSum(array, start, mid);
    ParallelSum rightTask = new ParallelSum(array, mid, end);

    // 并行执行子任务
    leftTask.fork();
    rightTask.fork();

    // 合并结果
    return leftTask.join() + rightTask.join();
}

// 静态方法,方便调用
public static long parallelSum(long[] array) {
    ForkJoinPool forkJoinPool = ForkJoinPool.commonPool();
    return forkJoinPool.invoke(new ParallelSum(array, 0, array.length));
}
登录后复制

}

MindShow
MindShow

MindShow官网 | AI生成PPT,快速演示你的想法

MindShow 1492
查看详情 MindShow

3. 使用示例与性能对比

测试并行与串行求和的性能差异:

public class SumTest {
    public static void main(String[] args) {
        int size = 10_000_000;
        long[] array = new long[size];
        for (int i = 0; i < size; i++) {
            array[i] = i + 1;
        }
<pre class='brush:java;toolbar:false;'>    // 并行求和
    long start = System.nanoTime();
    long parallelResult = ParallelSum.parallelSum(array);
    long parallelTime = (System.nanoTime() - start) / 1_000_000;

    // 串行求和
    start = System.nanoTime();
    long serialResult = 0;
    for (long v : array) {
        serialResult += v;
    }
    long serialTime = (System.nanoTime() - start) / 1_000_000;

    System.out.println("并行结果: " + parallelResult + ", 耗时: " + parallelTime + " ms");
    System.out.println("串行结果: " + serialResult + ", 耗时: " + serialTime + " ms");
}
登录后复制

}

在多核CPU上,并行版本通常能显著减少计算时间,尤其是数组较大时。

4. 关键细节与优化建议

  • 合理设置阈值:THRESHOLD 太小会导致任务拆分过度,增加调度开销;太大则无法充分利用并行性。一般根据数据规模和CPU核心数调整。
  • 使用 commonPool:ForkJoinPool.commonPool() 是全局共享的,默认并行度为 CPU 核心数减一,适合大多数场景。
  • 避免共享状态:任务应无副作用,确保线程安全。
  • 适合计算密集型任务:如果任务包含大量IO或阻塞操作,ForkJoin 不是最佳选择。

基本上就这些。ForkJoin 实现并行求和逻辑清晰,性能优势明显,是掌握 Java 并行编程的重要一步。

以上就是Java如何用ForkJoin实现数组并行求和_Java并行计算案例详解的详细内容,更多请关注php中文网其它相关文章!

最佳 Windows 性能的顶级免费优化软件
最佳 Windows 性能的顶级免费优化软件

每个人都需要一台速度更快、更稳定的 PC。随着时间的推移,垃圾文件、旧注册表数据和不必要的后台进程会占用资源并降低性能。幸运的是,许多工具可以让 Windows 保持平稳运行。

下载
来源:php中文网
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn
最新问题
开源免费商场系统广告
热门教程
更多>
最新下载
更多>
网站特效
网站源码
网站素材
前端模板
关于我们 免责申明 举报中心 意见反馈 讲师合作 广告合作 最新更新 English
php中文网:公益在线php培训,帮助PHP学习者快速成长!
关注服务号 技术交流群
PHP中文网订阅号
每天精选资源文章推送
PHP中文网APP
随时随地碎片化学习

Copyright 2014-2025 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号