0

0

KerasTuner中自定义指标(如F1、AUC)作为调优目标的实践指南

花韻仙語

花韻仙語

发布时间:2025-11-25 12:08:02

|

159人浏览过

|

来源于php中文网

原创

KerasTuner中自定义指标(如F1、AUC)作为调优目标的实践指南

本文旨在解决kerastuner在超参数调优过程中,使用f1 score、auc等自定义或非默认指标作为目标时常见的`keyerror`问题。核心在于明确kerastuner识别目标指标的机制,即指标必须在模型编译时被正确定义和包含,并且在kerastuner的`objective`中,目标名称需严格遵循`val_metric_name_string`的格式,以确保调优器能从训练日志中正确提取指标值。

引言:KerasTuner自定义指标的挑战

KerasTuner是Keras官方推荐的超参数调优库,它提供了强大的功能来自动化寻找最优模型架构和训练参数的过程。然而,当开发者尝试使用诸如F1 Score、AUC(Area Under the Curve)等在分类任务中更为专业和常用的指标作为调优目标时,常常会遇到KeyError。这通常是由于KerasTuner在训练日志中找不到指定指标而引发的运行时错误,例如KeyError: 'val_f1'。理解KerasTuner如何识别和追踪这些指标,是解决此类问题的关键。

KerasTuner目标指标机制解析

KerasTuner通过读取Keras模型训练过程中生成的日志(logs字典)来获取各个指标的值,从而评估不同超参数组合的表现。当您在kt.RandomSearch或任何其他KerasTuner调优器中指定objective时,KerasTuner会尝试在这些日志中查找对应名称的指标。

其核心机制包括以下两点:

  1. 指标名称约定:KerasTuner期望的目标指标名称通常遵循val_metric_name_string的格式。这里的metric_name_string是Keras模型在编译时所使用的指标的名称(通常是其类名的snake_case形式)。例如,如果您想以验证集上的F1 Score作为目标,那么目标名称应为val_f1_score。
  2. 模型编译时包含:要使KerasTuner能够追踪某个指标,该指标必须在Keras模型的compile方法中被明确地包含在metrics列表中。如果模型在编译时没有指定该指标,那么它就不会出现在训练日志中,KerasTuner自然也无法找到它,从而导致KeyError。

指标类型及其在KerasTuner中的应用

Keras支持两种主要类型的指标:内置指标和自定义指标。

1. 内置Keras指标

Keras提供了丰富的内置指标,如accuracy、loss、mse、mae、AUC、Precision、Recall等。

  • 使用方法:在model.compile中,您可以直接使用这些指标的字符串名称(通常是类名的snake_case形式)或其类实例。
    # 使用字符串名称
    model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy', 'auc'])
    # 使用类实例
    import tensorflow as tf
    model.compile(optimizer='adam', loss='binary_crossentropy', metrics=[tf.keras.metrics.Accuracy(), tf.keras.metrics.AUC()])
  • KerasTuner中的目标名称:对于内置指标,KerasTuner的目标名称是其在验证集上的日志名称。例如:
    • accuracy -> val_accuracy
    • auc (from tf.keras.metrics.AUC()) -> val_auc
    • f1_score (from tf.keras.metrics.F1Score()) -> val_f1_score

2. 自定义Keras指标

当内置指标无法满足特定需求时,您可以创建自定义指标。这通常通过继承tf.keras.metrics.Metric类来实现。

  • 实现方式:自定义指标需要实现__init__、update_state、result和reset_state方法。关键在于确保自定义指标在model.compile中被正确传递,并且其内部定义的名称(或Keras默认推断的名称)与KerasTuner期望的val_前缀名称匹配。
  • KerasTuner中的目标名称:如果您自定义了一个名为MyCustomMetric的指标,其在日志中的名称通常是my_custom_metric。那么,在KerasTuner中,对应的目标名称将是val_my_custom_metric。

实战:在KerasTuner中使用F1 Score作为调优目标

我们将以F1 Score为例,演示如何在KerasTuner中正确配置自定义指标。这里我们优先使用TensorFlow 2.15+或Keras 2.15+中内置的tf.keras.metrics.F1Score。

Runway Green Screen
Runway Green Screen

Runway 平台的AI视频工具,绿幕抠除、视频生成、动态捕捉等

下载

步骤一:导入F1 Score指标

首先,从tensorflow.keras.metrics中导入F1Score。

import tensorflow as tf
from tensorflow.keras import metrics
# ... 其他导入 ...

步骤二:在模型编译时包含F1 Score

在您的HyperModel的build方法中,当编译模型时,将F1Score实例添加到metrics列表中。请注意,F1Score的默认名称是f1_score。

class MyHyperModel(kt.HyperModel):
    def build(self, hp):
        model = Sequential()
        # ... 模型层定义 ...
        model.add(layers.Dense(1, activation="sigmoid"))

        # 编译模型时包含F1Score
        model.compile(
            optimizer=Adam(learning_rate=hp.Float('learning_rate', 5e-5, 5e-1, step=0.001)),
            loss='binary_crossentropy',
            metrics=['accuracy', metrics.F1Score(thresholds=0.5)] # 添加F1Score实例
        )
        return model

说明:metrics.F1Score(thresholds=0.5)会计算二分类问题的F1 Score,并以f1_score作为其在日志中的名称。

步骤三:配置KerasTuner的调优目标

在初始化KerasTuner调优器时,将objective设置为"val_f1_score",并指定优化方向。

tuner = kt.RandomSearch(
    MyHyperModel(),
    objective=kt.Objective("val_f1_score", direction="max"), # 使用val_f1_score作为目标
    max_trials=100,
    overwrite=True,
    directory="my_dir",
    project_name="tune_hypermodel",
)

完整示例代码

以下是一个整合了上述步骤的完整示例,演示如何在KerasTuner中使用F1 Score作为调优目标。

import keras_tuner as kt
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.metrics import classification_report
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers
from tensorflow.keras.models import Sequential
from tensorflow.keras.optimizers import Adam
from tensorflow.keras.regularizers import l2
from tensorflow.keras import metrics # 导入metrics模块

# 模拟数据
# 为了使示例可运行,我们创建一些虚拟数据
num_samples = 1000
num_features = 10
X = pd.DataFrame(tf.random.normal((num_samples, num_features)).numpy())
y = pd.DataFrame(tf.random.uniform((num_samples, 1), minval=0, maxval=2, dtype=tf.int32)).iloc[:, 0]
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

class MyHyperModel(kt.HyperModel):
    def build(self, hp):
        model = Sequential()
        model.add(layers.Flatten(input_shape=(X_train.shape[1],))) # 确保输入形状正确
        model.add(
            layers.Dense(
                units=hp.Int("units", min_value=24, max_value=128, step=10),
                activation="relu",
                kernel_regularizer=l2(hp.Float('l2_reg', 1e-5, 1e-2, sampling='log')) # 添加L2正则化作为超参数
            )
        )
        model.add(layers.Dense(1, activation="sigmoid"))  # 二分类输出层

        # 编译模型,包含F1Score作为评估指标
        model.compile(
            optimizer=Adam(learning_rate=hp.Float('learning_rate', 5e-5, 5e-1, sampling='log')),
            loss='binary_crossentropy',
            metrics=['accuracy', metrics.F1Score(thresholds=0.5)] # 添加F1Score
        )
        return model

    def fit(self, hp, model, *args, **kwargs):
        return model.fit(
            *args,
            batch_size=hp.Choice("batch_size", [16, 32, 64]), # 调整batch_size选项
            epochs=hp.Int('epochs', min_value=5, max_value=25, step=5),
            **kwargs,
        )

# 初始化KerasTuner的RandomSearch
tuner = kt.RandomSearch(
    MyHyperModel(),
    objective=kt.Objective("val_f1_score", direction="max"), # 目标设置为val_f1_score,方向为最大化
    max_trials=10, # 减少试验次数以便快速运行示例
    overwrite=True,
    directory="my_dir",
    project_name="tune_hypermodel_f1",
)

# 开始搜索
print("开始搜索超参数...")
tuner.search(X_train, y_train, validation_data=(X_test, y_test), callbacks=[keras.callbacks.EarlyStopping('val_loss', patience=3)])
print("搜索完成。")

# 获取最佳超参数和模型
best_hps = tuner.get_best_hyperparameters(num_trials=1)[0]
best_model = tuner.get_best_models(num_models=1)[0]

print(f"\n最佳超参数: {best_hps.values}")
loss, accuracy, f1_score = best_model.evaluate(X_test, y_test, verbose=0)
print(f"最佳模型在测试集上的F1 Score: {f1_score:.4f}")

注意事项与常见问题

  1. KeyError诊断:当出现KeyError时,首先检查:
    • 模型编译时是否包含了您希望作为调优目标的指标。
    • kt.Objective中指定的名称是否与Keras日志中该指标的名称完全匹配,并且带有val_前缀。例如,tf.keras.metrics.AUC()在日志中通常是auc,那么目标应是val_auc。
  2. 验证集:KerasTuner的val_前缀明确表示目标是基于验证集计算的指标。确保您的tuner.search调用中提供了validation_data。
  3. TensorFlow/Keras版本兼容性:部分高级指标(如tf.keras.metrics.F1Score)可能需要较新版本的TensorFlow(通常是2.15或更高版本)或Keras。如果您的版本较低,可能需要自定义实现这些指标。
  4. 自定义指标命名:如果您创建了自定义指标,确保其name属性在tf.keras.metrics.Metric子类中被正确设置,或者Keras能自动推断出一个合理的snake_case名称。例如,如果您的类名为MyCustomF1,KerasTuner可能期望val_my_custom_f1。
  5. 指标方向:kt.Objective中的direction参数("max"或"min")非常重要,它告诉KerasTuner是最大化还是最小化该指标。F1 Score、AUC通常是越大越好("max"),而损失(loss)通常是越小越好("min")。

总结

在KerasTuner中使用F1 Score、AUC等自定义或非默认指标作为调优目标是完全可行的。关键在于理解KerasTuner如何与Keras模型的训练日志交互,并遵循其命名约定。通过在模型编译时明确包含所需指标,并在KerasTuner的Objective中以val_metric_name_string的格式正确指定目标名称,您就可以充分利用这些高级指标来指导超参数搜索,从而找到性能更优的模型。

相关专题

更多
js 字符串转数组
js 字符串转数组

js字符串转数组的方法:1、使用“split()”方法;2、使用“Array.from()”方法;3、使用for循环遍历;4、使用“Array.split()”方法。本专题为大家提供js字符串转数组的相关的文章、下载、课程内容,供大家免费下载体验。

257

2023.08.03

js截取字符串的方法
js截取字符串的方法

js截取字符串的方法有substring()方法、substr()方法、slice()方法、split()方法和slice()方法。本专题为大家提供字符串相关的文章、下载、课程内容,供大家免费下载体验。

208

2023.09.04

java基础知识汇总
java基础知识汇总

java基础知识有Java的历史和特点、Java的开发环境、Java的基本数据类型、变量和常量、运算符和表达式、控制语句、数组和字符串等等知识点。想要知道更多关于java基础知识的朋友,请阅读本专题下面的的有关文章,欢迎大家来php中文网学习。

1465

2023.10.24

字符串介绍
字符串介绍

字符串是一种数据类型,它可以是任何文本,包括字母、数字、符号等。字符串可以由不同的字符组成,例如空格、标点符号、数字等。在编程中,字符串通常用引号括起来,如单引号、双引号或反引号。想了解更多字符串的相关内容,可以阅读本专题下面的文章。

619

2023.11.24

java读取文件转成字符串的方法
java读取文件转成字符串的方法

Java8引入了新的文件I/O API,使用java.nio.file.Files类读取文件内容更加方便。对于较旧版本的Java,可以使用java.io.FileReader和java.io.BufferedReader来读取文件。在这些方法中,你需要将文件路径替换为你的实际文件路径,并且可能需要处理可能的IOException异常。想了解更多java的相关内容,可以阅读本专题下面的文章。

550

2024.03.22

php中定义字符串的方式
php中定义字符串的方式

php中定义字符串的方式:单引号;双引号;heredoc语法等等。想了解更多字符串的相关内容,可以阅读本专题下面的文章。

545

2024.04.29

go语言字符串相关教程
go语言字符串相关教程

本专题整合了go语言字符串相关教程,阅读专题下面的文章了解更多详细内容。

161

2025.07.29

c++字符串相关教程
c++字符串相关教程

本专题整合了c++字符串相关教程,阅读专题下面的文章了解更多详细内容。

81

2025.08.07

高德地图升级方法汇总
高德地图升级方法汇总

本专题整合了高德地图升级相关教程,阅读专题下面的文章了解更多详细内容。

26

2026.01.16

热门下载

更多
网站特效
/
网站源码
/
网站素材
/
前端模板

精品课程

更多
相关推荐
/
热门推荐
/
最新课程
10分钟--Midjourney创作自己的漫画
10分钟--Midjourney创作自己的漫画

共1课时 | 0.1万人学习

Midjourney 关键词系列整合
Midjourney 关键词系列整合

共13课时 | 0.9万人学习

AI绘画教程
AI绘画教程

共2课时 | 0.2万人学习

关于我们 免责申明 举报中心 意见反馈 讲师合作 广告合作 最新更新
php中文网:公益在线php培训,帮助PHP学习者快速成长!
关注服务号 技术交流群
PHP中文网订阅号
每天精选资源文章推送

Copyright 2014-2026 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号