掌握scikit-learn需遵循统一流程:1. 用train_test_split划分数据,StandardScaler标准化特征;2. 按任务选模型如RandomForestClassifier并fit训练;3. 用predict预测,score和classification_report评估;4. 通过GridSearchCV调优超参数。关键在于数据预处理一致性和流程规范性。

scikit-learn 是 Python 中最常用的机器学习库之一,提供了大量现成的算法和工具,用于分类、回归、聚类、降维、模型选择和预处理等任务。使用它并不复杂,关键在于掌握基本流程和常用模块。
在训练模型前,数据需要清洗和格式化。scikit-learn 要求输入数据为数值型二维数组(即 numpy array 或 pandas DataFrame),每一行是一个样本,每一列是一个特征。
常见操作包括:示例代码:
from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) scaler = StandardScaler() X_train = scaler.fit_transform(X_train) X_test = scaler.transform(X_test)
根据任务类型选择合适的算法。比如分类用 LogisticRegression、SVM、RandomForest;回归用 LinearRegression、Ridge;聚类用 KMeans 等。
立即学习“Python免费学习笔记(深入)”;
使用方式高度统一:导入类 → 实例化 → 调用 fit() 训练。
示例:训练一个随机森林分类器
from sklearn.ensemble import RandomForestClassifier model = RandomForestClassifier(n_estimators=100, random_state=42) model.fit(X_train, y_train)
训练完成后,用测试集评估性能。分类任务常用准确率、F1 值,回归任务看 MSE、R² 等。
示例:
y_pred = model.predict(X_test)
print("Accuracy:", model.score(X_test, y_test))
from sklearn.metrics import classification_report
print(classification_report(y_test, y_pred))
模型性能常依赖于超参数设置。可以用 GridSearchCV 或 RandomizedSearchCV 自动搜索最优组合。
from sklearn.model_selection import GridSearchCV
param_grid = {'n_estimators': [50, 100, 200], 'max_depth': [3, 5, 7]}
grid_search = GridSearchCV(RandomForestClassifier(random_state=42), param_grid, cv=5)
grid_search.fit(X_train, y_train)
best_model = grid_search.best_estimator_
基本上就这些。scikit-learn 的设计非常一致,一旦熟悉一个模型的用法,其他模型也大同小异。关键是理解任务需求,准备好数据,再一步步建模、评估、优化。不复杂但容易忽略细节,比如别忘了对测试集应用同样的预处理。
以上就是python中scikit-learn算法库怎么用?的详细内容,更多请关注php中文网其它相关文章!
python怎么学习?python怎么入门?python在哪学?python怎么学才快?不用担心,这里为大家提供了python速学教程(入门到精通),有需要的小伙伴保存下载就能学习啦!
Copyright 2014-2025 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号