0

0

机器学习中对数变换预测结果的反向还原

花韻仙語

花韻仙語

发布时间:2025-12-01 14:17:57

|

365人浏览过

|

来源于php中文网

原创

机器学习中对数变换预测结果的反向还原

本文旨在详细阐述在机器学习模型中,如何将经过对数变换(logarithmic transformation)处理后的预测结果准确地还原回原始数值尺度。我们将探讨对数变换的目的、模型训练与预测过程,并重点讲解使用指数函数(`np.exp()`)进行反向变换的方法,同时强调在评估模型性能时,确保预测值和真实值处于相同尺度下的重要性。

1. 对数变换的背景与目的

在机器学习实践中,数据预处理是至关重要的一步。当目标变量(或某些特征)呈现高度偏斜分布(如长尾分布)时,直接用于模型训练可能会导致模型性能下降,例如线性模型可能难以捕捉非线性关系,或违反某些统计假设。对数变换是一种常用的技术,它通过将数据映射到对数空间来:

  • 减小数据偏斜: 使数据分布更接近正态分布,有助于满足某些模型的假设。
  • 稳定方差: 对于方差随均值增大的数据,对数变换可以使其方差更加稳定。
  • 处理异常值: 压缩极端值的影响,使模型对异常值不那么敏感。
  • 将乘性关系转化为加性关系: 在某些经济或生物学模型中,这有助于简化模型。

以下代码片段展示了如何对数据集中的特定列进行对数变换,同时处理非正值的情况:

import numpy as np
import pandas as pd
from sklearn.metrics import mean_absolute_error

# 假设 dtk 是原始DataFrame,dtd 是将要进行变换的DataFrame
# 为演示目的,我们创建一个模拟的 dtk 和 dtd
dtk_data = {
    'value_eur': [1000, 20000, 500000, 15000, 300000, 0, 500],
    'wage_eur': [500, 10000, 250000, 7500, 150000, 0, 250],
    'other_feature': [10, 20, 30, 15, 25, 5, 12]
}
dtk = pd.DataFrame(dtk_data)
dtd = dtk.copy() # dtd 将用于存储变换后的数据

# 对 'value_eur' 和 'wage_eur' 进行对数变换
# 注意:np.log() 只能处理正数,因此需要先过滤掉非正值
mask_value = dtd['value_eur'] > 0
dtd.loc[mask_value, 'value_eur'] = np.log(dtk.loc[mask_value, 'value_eur'])

mask_wage = dtd['wage_eur'] > 0
dtd.loc[mask_wage, 'wage_eur'] = np.log(dtk.loc[mask_wage, 'wage_eur'])

print("变换后的数据 (部分):")
print(dtd.head())

2. 模型训练与预测

在数据经过对数变换后,我们使用这些变换后的数据来训练机器学习模型。例如,如果 value_eur 是我们的目标变量 y,并且我们对其进行了对数变换,那么模型将学习预测 log(value_eur)。

以下是模型训练和预测的示例流程:

Anyword
Anyword

AI文案写作助手和文本生成器,具有可预测结果的文案 AI

下载
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestRegressor # 假设使用随机森林回归器
from sklearn.model_selection import GridSearchCV

# 准备 X 和 y
X = dtd.drop(['value_eur'], axis=1)
y = dtd['value_eur']

# 过滤掉因为对数变换而可能产生的 NaN/inf 值(如果原始数据包含0或负数)
# 在实际应用中,需要更完善的 NaN 处理策略
valid_indices = y.notna() & X.notna().all(axis=1)
X = X.loc[valid_indices]
y = y.loc[valid_indices]

# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# 假设 gs.best_estimator_ 已经通过 GridSearchCV 获得
# 这里我们直接实例化一个回归器作为示例
regressor = RandomForestRegressor(random_state=42)

# 训练模型
regressor.fit(X_train, y_train)

# 在测试集上进行预测
regs = regressor.predict(X_test)

# 此时 regs 中的值是 log-transformed 的预测值
print("\nLog-transformed 预测值 (部分):")
print(regs[:5])
print("\nLog-transformed 真实值 (部分):")
print(y_test.head())

3. 预测结果的反向变换

模型预测出的 regs 是目标变量的对数变换值。为了获得原始尺度的预测值,我们需要执行反向变换。对数变换的逆运算是指数函数,即 exp(log(x)) = x。在 NumPy 中,这可以通过 np.exp() 函数实现。

重要提示: 当计算评估指标(如 MAE, RMSE)时,如果希望在原始数据尺度上进行评估,则预测值和真实值都必须还原到原始尺度。仅仅还原预测值而真实值仍是对数变换后的,会导致评估结果的偏差和误解。

# 将预测值从对数尺度还原到原始尺度
y_pred_original_scale = np.exp(regs)

# 将测试集真实值从对数尺度还原到原始尺度,以便进行公平的评估和比较
y_test_original_scale = np.exp(y_test)

# 计算在原始尺度上的平均绝对误差 (MAE)
mae_original_scale = mean_absolute_error(y_test_original_scale, y_pred_original_scale)

print(f"\n原始尺度上的平均绝对误差 (MAE): {mae_original_scale:.2f}")

# 结果展示
results_original_scale = pd.DataFrame({
    '预测值 (原始尺度)': y_pred_original_scale,
    '真实值 (原始尺度)': y_test_original_scale
})

print("\n预测结果与真实值 (原始尺度,部分):")
print(results_original_scale.head())

4. 注意事项与总结

  1. 一致性是关键: 确保在模型训练前对目标变量进行了对数变换,那么在预测后也必须进行指数反向变换。同时,在计算基于原始尺度的评估指标时,真实值也需要进行相应的反向变换。
  2. 零值和负值的处理: 对数函数只对正数有定义。在进行对数变换前,务必处理好数据中的零值或负值。常见方法包括:
    • 加常数: 对所有值加上一个小的正数(如 np.log(x + 1)),尤其适用于数据中包含零的情况。
    • 过滤: 如示例所示,只对正值进行变换,并对非正值进行单独处理或排除。
    • 分段变换: 对不同范围的值采用不同的变换策略。
  3. 评估指标的选择: 如果模型在对数尺度上训练,其优化目标也是在对数尺度上的误差。这意味着模型可能在对数尺度上表现良好,但在原始尺度上,尤其是在高值区域,误差可能会被放大。因此,同时观察对数尺度和原始尺度上的评估指标是明智的。例如,MAE在原始尺度上更直观,而RMSE在对数尺度上可能更稳定。
  4. 解释性: 将预测结果还原到原始尺度,使得模型预测值更具业务可解释性,方便与领域专家沟通和实际应用。

通过上述步骤,我们可以确保在机器学习模型中使用对数变换时,不仅能利用其优点改善模型性能,还能准确地将预测结果还原到原始业务含义的尺度,从而进行正确的解释和评估。

相关专题

更多
java多线程相关教程合集
java多线程相关教程合集

本专题整合了java多线程相关教程,阅读专题下面的文章了解更多详细内容。

0

2026.01.21

windows激活码分享 windows一键激活教程指南
windows激活码分享 windows一键激活教程指南

Windows 10/11一键激活可以通过PowerShell脚本或KMS工具实现永久或长期激活。最推荐的简便方法是打开PowerShell(管理员),运行 irm https://get.activated.win | iex 脚本,按提示选择数字激活(选项1)。其他方法包括使用HEU KMS Activator工具进行智能激活。

0

2026.01.21

excel表格操作技巧大全 表格制作excel教程
excel表格操作技巧大全 表格制作excel教程

Excel表格操作的核心技巧在于 熟练使用快捷键、数据处理函数及视图工具,如Ctrl+C/V(复制粘贴)、Alt+=(自动求和)、条件格式、数据验证及数据透视表。掌握这些可大幅提升数据分析与办公效率,实现快速录入、查找、筛选和汇总。

1

2026.01.21

毒蘑菇显卡测试网站入口 毒蘑菇测试官网volumeshader_bm
毒蘑菇显卡测试网站入口 毒蘑菇测试官网volumeshader_bm

毒蘑菇VOLUMESHADER_BM测试网站网址为https://toolwa.com/vsbm/,该平台基于WebGL技术通过渲染高复杂度三维分形图形评估设备图形处理能力,用户可通过拖动彩色物体观察画面流畅度判断GPU与CPU协同性能;测试兼容多种设备,但中低端手机易卡顿或崩溃,高端机型可能因发热降频影响表现,桌面端需启用独立显卡并使用支持WebGL的主流浏览器以确保准确结果

2

2026.01.21

github中文官网入口 github中文版官网网页进入
github中文官网入口 github中文版官网网页进入

github中文官网入口https://docs.github.com/zh/get-started,GitHub 是一种基于云的平台,可在其中存储、共享并与他人一起编写代码。 通过将代码存储在GitHub 上的“存储库”中,你可以: “展示或共享”你的工作。 持续“跟踪和管理”对代码的更改。

2

2026.01.21

windows安全中心怎么关闭打开_windows安全中心操作指南
windows安全中心怎么关闭打开_windows安全中心操作指南

Windows安全中心可以通过系统设置轻松开关。 暂时关闭:打开“设置” -> “隐私和安全性” -> “Windows安全中心” -> “病毒和威胁防护” -> “管理设置”,将“实时保护”关闭。打开:同样路径将开关开启即可。如需彻底关闭,需在组策略(gpedit.msc)或注册表中禁用Windows Defender。

1

2026.01.21

C++游戏开发Unreal Engine_C++怎么用Unreal Engine开发游戏
C++游戏开发Unreal Engine_C++怎么用Unreal Engine开发游戏

虚幻引擎(Unreal Engine, 简称UE)是由Epic Games开发的一款功能强大的工业级3D游戏引擎,以高品质实时渲染(如Nanite和Lumen)闻名 。它基于C++语言,为开发者提供高效率的框架、强大的可视化脚本系统(蓝图)、以及针对PC、主机和移动端的完整开发工具,广泛用于游戏、电影制片等领域。

0

2026.01.21

Python GraphQL API 开发实战
Python GraphQL API 开发实战

本专题系统讲解 Python 在 GraphQL API 开发中的实际应用,涵盖 GraphQL 基础概念、Schema 设计、Query 与 Mutation 实现、权限控制、分页与性能优化,以及与现有 REST 服务和数据库的整合方式。通过完整示例,帮助学习者掌握 使用 Python 构建高扩展性、前后端协作友好的 GraphQL 接口服务,适用于中大型应用与复杂数据查询场景。

1

2026.01.21

云朵浏览器入口合集
云朵浏览器入口合集

本专题整合了云朵浏览器入口合集,阅读专题下面的文章了解更多详细地址。

22

2026.01.20

热门下载

更多
网站特效
/
网站源码
/
网站素材
/
前端模板

精品课程

更多
相关推荐
/
热门推荐
/
最新课程
10分钟--Midjourney创作自己的漫画
10分钟--Midjourney创作自己的漫画

共1课时 | 0.1万人学习

Midjourney 关键词系列整合
Midjourney 关键词系列整合

共13课时 | 0.9万人学习

AI绘画教程
AI绘画教程

共2课时 | 0.2万人学习

关于我们 免责申明 举报中心 意见反馈 讲师合作 广告合作 最新更新
php中文网:公益在线php培训,帮助PHP学习者快速成长!
关注服务号 技术交流群
PHP中文网订阅号
每天精选资源文章推送

Copyright 2014-2026 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号