首页 > 后端开发 > C++ > 正文

c++如何使用C++ AMP或CUDA进行GPU编程_c++异构计算入门

下次还敢
发布: 2025-12-02 10:14:59
原创
967人浏览过
C++中GPU编程主要通过CUDA和C++ AMP实现。1. CUDA由NVIDIA推出,需使用nvcc编译器,在.cu文件中编写kernel函数,通过cudaMalloc分配显存,cudaMemcpy传输数据,配置grid和block启动并行计算。2. C++ AMP是微软提供的库,基于DirectX 11,仅支持Windows平台,使用array_view自动管理内存,parallel_for_each执行并行任务,语法更贴近现代C++。3. CUDA适用于高性能、底层优化场景,生态丰富;C++ AMP适合快速开发,简化内存管理。4. 示例均为向量加法,体现数据准备、传输、并行执行和结果回收流程。5. 掌握其一后可深入学习共享内存、流式处理等高级特性以提升性能。

c++如何使用c++ amp或cuda进行gpu编程_c++异构计算入门

在C++中进行GPU编程,主要可以通过两种主流技术实现:NVIDIA的CUDA和微软推出的C++ AMP(Accelerated Massive Parallelism)。两者都允许开发者利用GPU的强大并行计算能力来加速数值密集型任务。下面分别介绍它们的基本使用方法和入门要点。

CUDA 编程入门

CUDA是NVIDIA推出的并行计算平台和编程模型,只能在NVIDIA GPU上运行。它扩展了C/C++语言,允许开发者编写在GPU上执行的函数(称为kernel)。

基本步骤:

  • 安装CUDA Toolkit(需配备支持CUDA的NVIDIA显卡和驱动)
  • 使用.cu作为源文件扩展名,并用nvcc编译器编译
  • 在代码中分配主机(CPU)和设备(GPU)内存
  • 将数据从主机复制到设备
  • 启动kernel函数在GPU上并行执行
  • 将结果从设备复制回主机

示例:向量加法

立即学习C++免费学习笔记(深入)”;

#include <cuda_runtime.h>
#include <iostream>
<p><strong>global</strong> void add(int<em> a, int</em> b, int<em> c, int n) {
int idx = blockIdx.x </em> blockDim.x + threadIdx.x;
if (idx < n) {
c[idx] = a[idx] + b[idx];
}
}</p><p>int main() {
const int n = 1024;
size_t bytes = n * sizeof(int);</p><pre class='brush:php;toolbar:false;'>int *h_a = new int[n], *h_b = new int[n], *h_c = new int[n];
int *d_a, *d_b, *d_c;

// 分配GPU内存
cudaMalloc(&d_a, bytes);
cudaMalloc(&d_b, bytes);
cudaMalloc(&d_c, bytes);

// 初始化输入数据
for (int i = 0; i < n; ++i) {
    h_a[i] = i;
    h_b[i] = i * 2;
}

// 主机到设备数据传输
cudaMemcpy(d_a, h_a, bytes, cudaMemcpyHostToDevice);
cudaMemcpy(d_b, h_b, bytes, cudaMemcpyHostToDevice);

// 配置kernel执行参数
int blockSize = 256;
int gridSize = (n + blockSize - 1) / blockSize;
add<<<gridSize, blockSize>>>(d_a, d_b, d_c, n);

// 设备到主机拷贝结果
cudaMemcpy(h_c, d_c, bytes, cudaMemcpyDeviceToHost);

// 清理资源
delete[] h_a; delete[] h_b; delete[] h_c;
cudaFree(d_a); cudaFree(d_b); cudaFree(d_c);

return 0;
登录后复制

}

C++ AMP 入门

C++ AMP是微软为简化GPU编程而设计的C++库,集成在Visual Studio中,仅支持Windows平台和DirectX 11兼容的GPU。它基于现代C++语法,无需额外编译器,使用标准C++编译即可。

Replit Ghostwrite
Replit Ghostwrite

一种基于 ML 的工具,可提供代码完成、生成、转换和编辑器内搜索功能。

Replit Ghostwrite 93
查看详情 Replit Ghostwrite

核心概念:

  • array_view:提供对数据的视图,自动管理主机与设备间的数据传输
  • parallel_for_each:启动并行计算,指定执行范围和kernel逻辑
  • extent:定义多维索引空间

示例:向量加法(C++ AMP)

#include <amp.h>
#include <vector>
#include <iostream>
<p>using namespace concurrency;</p><p>int main() {
const int n = 1024;
std::vector<int> a(n), b(n), c(n);</p><pre class='brush:php;toolbar:false;'>// 初始化数据
for (int i = 0; i < n; ++i) {
    a[i] = i;
    b[i] = i * 2;
}

// 创建array_view(延迟传输)
array_view<const int, 1> av(n, a);
array_view<const int, 1> bv(n, b);
array_view<int, 1> cv(n, c);

// 并行计算
parallel_for_each(cv.extent, [=](index<1> idx) restrict(amp) {
    cv[idx] = av[idx] + bv[idx];
});

// 强制同步获取结果
cv.synchronize();

return 0;
登录后复制

}

注意:C++ AMP中的restrict(amp)表示该代码块只能使用AMP支持的语法和类型。

选择建议

  • 若使用NVIDIA GPU且追求高性能、广泛生态(如深度学习框架),选择CUDA更合适
  • 若在Windows平台开发,希望快速集成且避免复杂内存管理,C++ AMP更简洁
  • CUDA功能更强大、控制更精细,适合底层优化;C++ AMP更接近现代C++风格,易上手

基本上就这些。掌握任一技术后,可进一步学习内存优化、共享内存、流处理等高级特性。异构计算虽有一定门槛,但合理使用能显著提升程序性能。

以上就是c++++如何使用C++ AMP或CUDA进行GPU编程_c++异构计算入门的详细内容,更多请关注php中文网其它相关文章!

c++速学教程(入门到精通)
c++速学教程(入门到精通)

c++怎么学习?c++怎么入门?c++在哪学?c++怎么学才快?不用担心,这里为大家提供了c++速学教程(入门到精通),有需要的小伙伴保存下载就能学习啦!

下载
来源:php中文网
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn
最新问题
开源免费商场系统广告
热门教程
更多>
最新下载
更多>
网站特效
网站源码
网站素材
前端模板
关于我们 免责申明 举报中心 意见反馈 讲师合作 广告合作 最新更新 English
php中文网:公益在线php培训,帮助PHP学习者快速成长!
关注服务号 技术交流群
PHP中文网订阅号
每天精选资源文章推送
PHP中文网APP
随时随地碎片化学习

Copyright 2014-2025 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号