
本教程详细介绍了如何使用pandas库,根据dataframe中指定列范围内的值是否存在特定条件(例如大于0),来动态创建并填充一个新的列。文章将重点讲解如何利用`df.filter()`结合正则表达式进行灵活的列选择,并通过`any()`和`numpy.where()`实现复杂的条件逻辑判断,最终生成如“y/n”响应者标记的新列,提升数据处理效率与灵活性。
在数据分析实践中,我们经常需要根据现有数据生成新的特征列。当条件涉及DataFrame中多个列,且这些列需要根据某种模式(而非明确列表)进行选择时,这一任务会变得更具挑战性。例如,我们需要检查一系列“事件”列中是否有任何一个值满足特定标准(如大于0),然后据此标记一个“响应者”列。本教程将深入探讨如何利用Pandas的强大功能,高效且灵活地解决这类问题。
解决上述问题的关键在于两个方面:
我们将使用df.filter()进行动态列选择,结合any(axis=1)进行行级别的条件判断,并最终通过numpy.where()将布尔结果转换为我们所需的值。
首先,我们创建一个模拟的DataFrame来演示这个过程:
import pandas as pd
import numpy as np
# 示例DataFrame
data = {
'Animal_ID': ['a1', 'a2', 'a3', 'a4'],
'weight': [50, 52, 75, 53],
'Project': ['p1', 'p2', 'p1', 'p2'],
'Exp_type': ['Acute', 'chronic', 'Acute', 'chronic'],
'researcher': ['alex', 'mat', 'alex', 'mat'],
'events_d1': [0, 0, 1, 0],
'events_d2': [0, 1, np.nan, np.nan],
'events_d3': [0, 1, 2, np.nan],
'events_d4': [4, 5, np.nan, 0]
}
df = pd.DataFrame(data)
print("原始DataFrame:")
print(df)输出:
图书《网页制作与PHP语言应用》,由武汉大学出版社于2006出版,该书为普通高等院校网络传播系列教材之一,主要阐述了网页制作的基础知识与实践,以及PHP语言在网络传播中的应用。该书内容涉及:HTML基础知识、PHP的基本语法、PHP程序中的常用函数、数据库软件MySQL的基本操作、网页加密和身份验证、动态生成图像、MySQL与多媒体素材库的建设等。
447
原始DataFrame: Animal_ID weight Project Exp_type researcher events_d1 events_d2 events_d3 events_d4 0 a1 50 p1 Acute alex 0 0.0 0.0 4.0 1 a2 52 p2 chronic mat 0 1.0 1.0 5.0 2 a3 75 p1 Acute alex 1 NaN 2.0 NaN 3 a4 53 p2 chronic mat 0 NaN NaN 0.0
我们的目标是检查 events_d1、events_d2 和 events_d3 列,但不包括 events_d4。df.filter() 方法允许我们使用正则表达式来匹配列名。
为了排除 events_d4,我们可以使用正则表达式 events_d[^4]。这里的 [^4] 表示匹配除了数字 4 之外的任何字符。
# 筛选出不包含 'events_d4' 的 'events_d' 系列列
event_columns = df.filter(regex="events_d[^4]")
print("\n筛选出的事件列:")
print(event_columns)输出:
筛选出的事件列: events_d1 events_d2 events_d3 0 0 0.0 0.0 1 0 1.0 1.0 2 1 NaN 2.0 3 0 NaN NaN
现在我们已经得到了感兴趣的列,接下来需要检查每一行中这些列是否存在至少一个大于0的值。
# 检查筛选出的列中是否有任何值大于0
# .any(axis=1) 会在行级别进行判断,如果一行中至少有一个True,则返回True
m = event_columns.gt(0).any(axis=1)
print("\n条件判断结果 (布尔Series):")
print(m)输出:
条件判断结果 (布尔Series): 0 False 1 True 2 True 3 False dtype: bool
这里 gt(0) 是 > 的等价方法,可以更好地处理 NaN 值(NaN > 0 结果为 False)。
最后一步是根据布尔Series m 的结果,在原始DataFrame中创建新的 responder 列。numpy.where() 函数非常适合这种条件赋值:np.where(condition, value_if_true, value_if_false)。
# 根据布尔Series 'm' 创建 'responder' 列
df['responder'] = np.where(m, 'y', 'n')
print("\n最终DataFrame:")
print(df)输出:
最终DataFrame: Animal_ID weight Project Exp_type researcher events_d1 events_d2 events_d3 events_d4 responder 0 a1 50 p1 Acute alex 0 0.0 0.0 4.0 n 1 a2 52 p2 chronic mat 0 1.0 1.0 5.0 y 2 a3 75 p1 Acute alex 1 NaN 2.0 NaN y 3 a4 53 p2 chronic mat 0 NaN NaN 0.0 n
将上述步骤整合到一起,得到完整的解决方案:
import pandas as pd
import numpy as np
# 示例DataFrame
data = {
'Animal_ID': ['a1', 'a2', 'a3', 'a4'],
'weight': [50, 52, 75, 53],
'Project': ['p1', 'p2', 'p1', 'p2'],
'Exp_type': ['Acute', 'chronic', 'Acute', 'chronic'],
'researcher': ['alex', 'mat', 'alex', 'mat'],
'events_d1': [0, 0, 1, 0],
'events_d2': [0, 1, np.nan, np.nan],
'events_d3': [0, 1, 2, np.nan],
'events_d4': [4, 5, np.nan, 0]
}
df = pd.DataFrame(data)
# 1. 动态选择目标列(排除 events_d4)
# regex="events_d[^4]" 匹配 'events_d' 后跟除了 '4' 之外的任何字符
event_columns_to_check = df.filter(regex="events_d[^4]")
# 2. 对选定列应用条件 (大于0),并进行行级聚合 (任意一个为True)
# .gt(0) 检查每个元素是否大于0
# .any(axis=1) 检查每行中是否有任何一个True值(即至少一个事件大于0)
condition_met = event_columns_to_check.gt(0).any(axis=1)
# 3. 使用 numpy.where 根据条件创建新的 'responder' 列
df['responder'] = np.where(condition_met, 'y', 'n')
print("最终生成的DataFrame:")
print(df)本教程展示了如何利用Pandas的filter()、any()以及numpy.where()组合,以一种高度灵活和高效的方式,根据多列范围内的复杂条件动态创建新列。这种方法不仅避免了手动列举列名的繁琐,还提供了强大的正则表达式匹配能力,使得在面对动态或模式化的列集时,数据清洗和特征工程变得更加便捷和可维护。掌握这些技巧将显著提升你在Python数据分析中的生产力。
以上就是Pandas教程:基于多列范围与条件动态创建新列的详细内容,更多请关注php中文网其它相关文章!
每个人都需要一台速度更快、更稳定的 PC。随着时间的推移,垃圾文件、旧注册表数据和不必要的后台进程会占用资源并降低性能。幸运的是,许多工具可以让 Windows 保持平稳运行。
Copyright 2014-2025 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号