ANCOVA是带连续协变量的方差分析,本质为含分类变量与连续协变量的线性回归;需检验平行线假设,拟合主效应模型后解读组间净差异,协变量须事前测量且具理论依据。

协方差分析(ANCOVA,Analysis of Covariance)不是纯Python算法,而是统计建模方法——它本质是“带连续协变量的方差分析”,即在线性模型中同时纳入分类自变量(如实验组别)和连续协变量(如基线测量值),以控制混杂效应、提升检验效能。Python本身不内置ANCOVA专用函数,但可通过statsmodels或scipy拟合含交互项的线性回归模型来等价实现。
假设有1个分类因子A(k个水平,如对照组/用药组/安慰剂组),1个连续协变量X(如治疗前血压),因变量Y(如治疗后血压)。ANCOVA模型写为:
Yij = μ + αi + β(Xij − X̄) + εij
其中:μ是总均值,αi是第i组的主效应(满足∑αi=0),β是协变量X的公共斜率(假设各组斜率相等,即“平行线假设”),X̄是X的总体均值(中心化可避免主效应与协变量估计耦合),εij ~ N(0, σ²)。
立即学习“Python免费学习笔记(深入)”;
实际建模时,用哑变量(dummy coding)表示组别,例如3组生成2个哑变量D₁、D₂,则模型变为:
启科网络商城系统由启科网络技术开发团队完全自主开发,使用国内最流行高效的PHP程序语言,并用小巧的MySql作为数据库服务器,并且使用Smarty引擎来分离网站程序与前端设计代码,让建立的网站可以自由制作个性化的页面。 系统使用标签作为数据调用格式,网站前台开发人员只要简单学习系统标签功能和使用方法,将标签设置在制作的HTML模板中进行对网站数据、内容、信息等的调用,即可建设出美观、个性的网站。
0
Y = β₀ + β₁D₁ + β₂D₂ + β₃X + ε
此时β₁、β₂直接解释为对应组相对于参照组的均值调整量(已控制X影响)。
statsmodels.formula.api.ols拟合,再调用.fit()获得参数估计与F检验结果。假设DataFrame df含列'group'(str)、'baseline_bp'(float)、'post_bp'(float):
import statsmodels.api as sm
import statsmodels.formula.api as smf
<h1>检验平行线假设</h1><p>model_full = smf.ols('post_bp ~ C(group) + baseline_bp + C(group):baseline_bp', data=df)
result_full = model_full.fit()
print(result_full.f_test("C(group):baseline_bp")) # 看交互项是否显著</p><h1>若交互不显著,拟合ANCOVA主模型</h1><p>model_ancova = smf.ols('post_bp ~ C(group) + baseline_bp', data=df)
result = model_ancova.fit()
print(result.summary()) # 关注C(group)各行的P>|t|和[0.025 0.975]</p>car::Anova(R)或手动计算Type III SS——Python中可用statsmodels.stats.anova.anova_lm并设typ=3(需安装最新版)。基本上就这些。ANCOVA不是黑箱,它只是线性模型在特定研究设计下的自然应用——理解其背后“控制混杂、校正偏倚”的逻辑,比记住某段代码更重要。
以上就是Python使用协方差分析进行数据建模的数学方法讲解【教学】的详细内容,更多请关注php中文网其它相关文章!
每个人都需要一台速度更快、更稳定的 PC。随着时间的推移,垃圾文件、旧注册表数据和不必要的后台进程会占用资源并降低性能。幸运的是,许多工具可以让 Windows 保持平稳运行。
Copyright 2014-2025 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号