0

0

PythonSeaborn统计图项目教程_分类回归可视化实例

舞姬之光

舞姬之光

发布时间:2025-12-30 18:43:21

|

637人浏览过

|

来源于php中文网

原创

Seaborn可视化核心是厘清变量角色:分类变量用于分组或着色,数值变量承载分布或趋势,回归线仅适用于存在明确因果关系的变量对;countplot和catplot展示分类频次,boxplot/violinplot/stripplot对比类别下数值分布,regplot/lmplot添加合理回归线,relplot统一调度分组、分面与趋势。

pythonseaborn统计图项目教程_分类回归可视化实例

用 Seaborn 做分类与回归可视化,关键不是堆代码,而是理清变量角色:分类变量控制分组或色调,数值变量承载分布或趋势,而回归线只在有明确自变量→因变量关系时才合理添加。

分类数据分布:用 countplotcatplot 看频次

适合展示类别型变量(如“性别”“地区”“产品类型”)的样本数量分布。countplot 是基础,catplot 更灵活,支持按另一变量分面。

  • 单变量频次:sns.countplot(data=df, x="category_col")
  • 分面统计:sns.catplot(data=df, x="category_col", hue="status", kind="count", col="year") —— 按年份切图,每张图内再按 status 上色
  • 注意:x/y 必须是离散取值列;若数值列被误当分类变量(如评分 1–5),先转为 category 类型或用 pd.cut 离散化

分类 vs 数值:用 boxplotviolinplotstripplot 对比分布

当想比较不同类别下某数值指标(如销售额、响应时间、用户评分)的集中趋势与离散程度时,这三类图最常用。

  • boxplot 展示中位数、四分位距和异常值,简洁稳健;violinplot 叠加核密度估计,能看出分布形状(是否双峰、偏态);stripplot 显示所有原始点,适合小样本或需观察离群点位置
  • 组合使用更有效:sns.violinplot(data=df, x="group", y="score"); sns.stripplot(data=df, x="group", y="score", color="k", size=3, alpha=0.6)
  • 避免常见错误:y 轴必须是连续数值;若类别过多(>8),优先改用横向图(y="group", x="score")并调整 figure size

数值变量间关系:用 regplotlmplot 添加回归参考线

仅当两个变量存在可解释的因果/预测关系(如广告投入 → 销售额、学习时长 → 考试分数)时才加回归线。不要对任意两列数值盲目拟合。

Bika.ai
Bika.ai

打造您的AI智能体员工团队

下载

立即学习Python免费学习笔记(深入)”;

  • 简单双变量:sns.regplot(data=df, x="ad_spend", y="revenue", scatter_kws={"alpha":0.4})
  • 按分类分组拟合:sns.lmplot(data=df, x="hours", y="score", hue="course", ci=95) —— 每组单独拟合,并带 95% 置信区间带
  • 注意:回归线默认是线性;若明显非线性(如 S 型、指数衰减),先做变量变换(log、sqrt)或换用 sns.scatterplot + 手动拟合非线性模型

分类+数值+回归一体化:用 relplot 统一调度

当需要同时体现分组(hue)、分面(col/row)和趋势线(kind="line" 或 "scatter" + add reg line),relplot 是最可控的入口函数。

  • 例如:按季度(col)和城市(hue)看月均订单量(y)随促销力度(x)的变化,并叠加每组回归线:sns.relplot(data=df, x="promo_level", y="orders", hue="city", col="quarter", kind="scatter", height=4); plt.show();再对每个子图手动加 regplot
  • relplot 返回 FacetGrid 对象,可用 map() 方法向各子图批量添加元素,比如 map(sns.regplot, "x", "y")
  • 别忽略 col_wrap 参数:当分面变量取值太多,用 col_wrap=3 让它自动换行排布,比拉长 figure 更易读

不复杂但容易忽略:所有图都依赖数据质量。画之前用 df.groupby("category").agg({"value": ["count", "mean", "std"]}) 快速扫一眼各组样本量与数值范围,能避开 90% 的误导性图形。

相关专题

更多
counta和count的区别
counta和count的区别

Count函数用于计算指定范围内数字的个数,而CountA函数用于计算指定范围内非空单元格的个数。本专题为大家提供相关的文章、下载、课程内容,供大家免费下载体验。

192

2023.11.20

堆和栈的区别
堆和栈的区别

堆和栈的区别:1、内存分配方式不同;2、大小不同;3、数据访问方式不同;4、数据的生命周期。本专题为大家提供堆和栈的区别的相关的文章、下载、课程内容,供大家免费下载体验。

366

2023.07.18

堆和栈区别
堆和栈区别

堆(Heap)和栈(Stack)是计算机中两种常见的内存分配机制。它们在内存管理的方式、分配方式以及使用场景上有很大的区别。本文将详细介绍堆和栈的特点、区别以及各自的使用场景。php中文网给大家带来了相关的教程以及文章欢迎大家前来学习阅读。

559

2023.08.10

golang map内存释放
golang map内存释放

本专题整合了golang map内存相关教程,阅读专题下面的文章了解更多相关内容。

73

2025.09.05

golang map相关教程
golang map相关教程

本专题整合了golang map相关教程,阅读专题下面的文章了解更多详细内容。

25

2025.11.16

golang map原理
golang map原理

本专题整合了golang map相关内容,阅读专题下面的文章了解更多详细内容。

36

2025.11.17

java判断map相关教程
java判断map相关教程

本专题整合了java判断map相关教程,阅读专题下面的文章了解更多详细内容。

31

2025.11.27

excel制作动态图表教程
excel制作动态图表教程

本专题整合了excel制作动态图表相关教程,阅读专题下面的文章了解更多详细教程。

24

2025.12.29

freeok看剧入口合集
freeok看剧入口合集

本专题整合了freeok看剧入口网址,阅读下面的文章了解更多网址。

74

2025.12.29

热门下载

更多
网站特效
/
网站源码
/
网站素材
/
前端模板

精品课程

更多
相关推荐
/
热门推荐
/
最新课程
最新Python教程 从入门到精通
最新Python教程 从入门到精通

共4课时 | 0.6万人学习

Django 教程
Django 教程

共28课时 | 2.6万人学习

SciPy 教程
SciPy 教程

共10课时 | 0.9万人学习

关于我们 免责申明 举报中心 意见反馈 讲师合作 广告合作 最新更新
php中文网:公益在线php培训,帮助PHP学习者快速成长!
关注服务号 技术交流群
PHP中文网订阅号
每天精选资源文章推送

Copyright 2014-2025 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号