1.源代码位置
头文件:http://trac.nginx.org/nginx/browser/nginx/src/core/ngx_palloc.h
源文件:http://trac.nginx.org/nginx/browser/nginx/src/core/ngx_palloc.c
2.数据结构定义
先来学习一下nginx内存池的几个主要数据结构:
ngx_pool_data_t(内存池数据块结构)
<span> 1:</span><span>typedef</span> <span>struct</span> {<span> 2:</span> u_char *last;
<span> 3:</span> u_char *end;
<span> 4:</span> ngx_pool_t *next;
<span> 5:</span> ngx_uint_t failed;
<span> 6:</span> } ngx_pool_data_t;
ngx_pool_s(内存池头部结构)
<span> 1:</span><span>struct</span> ngx_pool_s {<span> 2:</span> ngx_pool_data_t d;
<span> 3:</span> size_t max;
<span> 4:</span> ngx_pool_t *current;
<span> 5:</span> ngx_chain_t *chain;
<span> 6:</span> ngx_pool_large_t *large;
<span> 7:</span> ngx_pool_cleanup_t *cleanup;
<span> 8:</span> ngx_log_t *log;
<span> 9:</span> };
由ngx_pool_data_t和ngx_pool_t组成的nginx内存池结构如下图所示:

3.相关函数介绍
在分析内存池方法前,需要对几个主要的内存相关函数作一下介绍:
ngx_alloc:(只是对malloc进行了简单的封装)
<span> 1:</span><span>void</span> *登录后复制<span> 2:</span> ngx_alloc(size_t size, ngx_log_t *log)登录后复制<span> 3:</span> {登录后复制<span> 4:</span> <span>void</span> *p;登录后复制<span> 5:</span>登录后复制<span> 6:</span> p = malloc(size);登录后复制<span> 7:</span> <span>if</span> (p == NULL) {登录后复制<span> 8:</span> ngx_log_error(NGX_LOG_EMERG, log, ngx_errno,登录后复制<span> 9:</span> <span>"malloc(%uz) failed"</span>, size);登录后复制<span> 10:</span> }登录后复制<span> 11:</span>登录后复制<span> 12:</span> ngx_log_debug2(NGX_LOG_DEBUG_ALLOC, log, 0, <span>"malloc: %p:%uz"</span>, p, size);登录后复制<span> 13:</span>登录后复制<span> 14:</span> <span>return</span> p;登录后复制<span> 15:</span> }登录后复制
ngx_calloc:(调用malloc并初始化为0)
<span> 1:</span><span>void</span> *登录后复制<span> 2:</span> ngx_calloc(size_t size, ngx_log_t *log)登录后复制<span> 3:</span> {登录后复制<span> 4:</span> <span>void</span> *p;登录后复制<span> 5:</span>登录后复制<span> 6:</span> p = ngx_alloc(size, log);登录后复制<span> 7:</span>登录后复制<span> 8:</span> <span>if</span> (p) {登录后复制<span> 9:</span> ngx_memzero(p, size);登录后复制<span> 10:</span> }登录后复制<span> 11:</span>登录后复制<span> 12:</span> <span>return</span> p;登录后复制<span> 13:</span> }登录后复制
ngx_memzero:
<span> 1:</span> #define ngx_memzero(buf, n) (<span>void</span>) memset(buf, 0, n)登录后复制
ngx_free :
<span> 1:</span> #define ngx_free free登录后复制
ngx_memalign:
<span> 1:</span><span>void</span> *登录后复制<span> 2:</span> ngx_memalign(size_t alignment, size_t size, ngx_log_t *log)登录后复制<span> 3:</span> {登录后复制<span> 4:</span> <span>void</span> *p;登录后复制<span> 5:</span> int err;登录后复制<span> 6:</span>登录后复制<span> 7:</span> err = posix_memalign(&p, alignment, size);登录后复制<span> 8:</span>登录后复制<span> 9:</span> <span>if</span> (err) {登录后复制<span> 10:</span> ngx_log_error(NGX_LOG_EMERG, log, err,登录后复制<span> 11:</span> "posix_memalign(%uz, %uz) failed", alignment, size);登录后复制<span> 12:</span> p = NULL;登录后复制<span> 13:</span> }登录后复制<span> 14:</span>登录后复制<span> 15:</span> ngx_log_debug3(NGX_LOG_DEBUG_ALLOC, log, 0,登录后复制<span> 16:</span> <span>"posix_memalign: %p:%uz @%uz"</span>, p, size, alignment);登录后复制<span> 17:</span>登录后复制<span> 18:</span> <span>return</span> p;登录后复制<span> 19:</span> }登录后复制
这里alignment主要是针对部分unix平台需要动态的对齐,对POSIX 1003.1d提供的posix_memalign( )进行封装,在大多数情况下,编译器和C库透明地帮你处理对齐问题。nginx中通过宏NGX_HAVE_POSIX_MEMALIGN来控制;调用posix_memalign( )成功时会返回size字节的动态内存,并且这块内存的地址是alignment的倍数。参数alignment必须是2的幂,还是void指针的大小的倍数。返回的内存块的地址放在了memptr里面,函数返回值是0.
4.内存池基本操作
| 创建内存池 | ngx_pool_t * ngx_create_pool(size_t size, ngx_log_t *log); |
| 销毁内存池 | void ngx_destroy_pool(ngx_pool_t *pool); |
| 重置内存池 | void ngx_reset_pool(ngx_pool_t *pool); |
| 内存申请(对齐) | void * ngx_palloc(ngx_pool_t *pool, size_t size); |
| 内存申请(不对齐) | void * ngx_pnalloc(ngx_pool_t *pool, size_t size); |
| 内存清除 | ngx_int_t ngx_pfree(ngx_pool_t *pool, void *p); |
4.1 创建内存池ngx_create_pool
ngx_create_pool用于创建一个内存池,我们创建时,传入我们的需要的初始大小:
<span> 1:</span> ngx_pool_t *登录后复制<span> 2:</span> ngx_create_pool(size_t size, ngx_log_t *log)登录后复制<span> 3:</span> {登录后复制<span> 4:</span> ngx_pool_t *p;登录后复制<span> 5:</span>登录后复制<span> 6:</span> //以16(NGX_POOL_ALIGNMENT)字节对齐分配size内存登录后复制<span> 7:</span> p = ngx_memalign(NGX_POOL_ALIGNMENT, size, log);登录后复制<span> 8:</span> if (p == NULL) {登录后复制<span> 9:</span> <span>return</span> NULL;登录后复制<span> 10:</span> }登录后复制<span> 11:</span>登录后复制<span> 12:</span> <span>//初始状态:last指向ngx_pool_t结构体之后数据取起始位置</span>登录后复制<span> 13:</span> p->d.last = (u_char *) p + sizeof(ngx_pool_t);登录后复制<span> 14:</span> //end指向分配的整个size大小的内存的末尾登录后复制<span> 15:</span> p->d.end = (u_char *) p + size;登录后复制<span> 16:</span>登录后复制<span> 17:</span> p->d.next = NULL;登录后复制<span> 18:</span> p->d.failed = 0;登录后复制<span> 19:</span>登录后复制<span> 20:</span> size = size - <span>sizeof</span>(ngx_pool_t);登录后复制<span> 21:</span> <span>//#define NGX_MAX_ALLOC_FROM_POOL (ngx_pagesize - 1),内存池最大不超过4095,x86中页的大小为4K</span>登录后复制<span> 22:</span> p->max = (size < NGX_MAX_ALLOC_FROM_POOL) ? size : NGX_MAX_ALLOC_FROM_POOL;登录后复制<span> 23:</span>登录后复制<span> 24:</span> p->current = p;登录后复制<span> 25:</span> p->chain = NULL;登录后复制<span> 26:</span> p->large = NULL;登录后复制<span> 27:</span> p->cleanup = NULL;登录后复制<span> 28:</span> p->log = log;登录后复制<span> 29:</span>登录后复制<span> 30:</span> <span>return</span> p;登录后复制<span> 31:</span> }登录后复制
nginx对内存的管理分为大内存与小内存,当某一个申请的内存大于某一个值时,就需要从大内存中分配空间,否则从小内存中分配空间。
nginx中的内存池是在创建的时候就设定好了大小,在以后分配小块内存的时候,如果内存不够,则是重新创建一块内存串到内存池中,而不是将原有的内存池进行扩张。当要分配大块内存是,则是在内存池外面再分配空间进行管理的,称为大块内存池。
4.2 内存申请 ngx_palloc
<span> 1:</span><span>void</span> *登录后复制<span> 2:</span> ngx_palloc(ngx_pool_t *pool, size_t size)登录后复制<span> 3:</span> {登录后复制<span> 4:</span> u_char *m;登录后复制<span> 5:</span> ngx_pool_t *p;登录后复制<span> 6:</span>登录后复制<span> 7:</span> //如果申请的内存大小小于内存池的max值登录后复制<span> 8:</span> if (size <= pool->max) {登录后复制<span> 9:</span>登录后复制<span> 10:</span> p = pool->current;登录后复制<span> 11:</span>登录后复制<span> 12:</span> <span>do</span> {登录后复制<span> 13:</span> //对内存地址进行对齐处理登录后复制<span> 14:</span> m = ngx_align_ptr(p->d.last, NGX_ALIGNMENT);登录后复制<span> 15:</span>登录后复制<span> 16:</span> //如果当前内存块够分配内存,则直接分配登录后复制<span> 17:</span> if ((size_t) (p->d.end - m) >= size)登录后复制<span> 18:</span> {登录后复制<span> 19:</span> p->d.last = m + size;登录后复制<span> 20:</span>登录后复制<span> 21:</span> <span>return</span> m;登录后复制<span> 22:</span> }登录后复制<span> 23:</span>登录后复制<span> 24:</span> <span>//如果当前内存块有效容量不够分配,则移动到下一个内存块进行分配</span>登录后复制<span> 25:</span> p = p->d.next;登录后复制<span> 26:</span>登录后复制<span> 27:</span> } <span>while</span> (p);登录后复制<span> 28:</span>登录后复制<span> 29:</span> //当前所有内存块都没有空闲了,开辟一块新的内存,如下2详细解释登录后复制<span> 30:</span> <span>return</span> ngx_palloc_block(pool, size);登录后复制<span> 31:</span> }登录后复制<span> 32:</span>登录后复制<span> 33:</span> <span>//分配大块内存</span>登录后复制<span> 34:</span> <span>return</span> ngx_palloc_large(pool, size);登录后复制<span> 35:</span> }登录后复制
需要说明的几点:
1、ngx_align_ptr,这是一个用来内存地址取整的宏,非常精巧,一句话就搞定了。作用不言而喻,取整可以降低CPU读取内存的次数,提高性能。因为这里并没有真正意义调用malloc等函数申请内存,而是移动指针标记而已,所以内存对齐的活,C编译器帮不了你了,得自己动手。
<span> 1:</span> #define ngx_align_ptr(p, a) \登录后复制<span> 2:</span> (u_char *) (((uintptr_t) (p) + ((uintptr_t) a - 1)) & ~((uintptr_t) a - 1))登录后复制
2、开辟一个新的内存块 ngx_palloc_block(ngx_pool_t *pool, size_t size)
这个函数是用来分配新的内存块,为pool内存池开辟一个新的内存块,并申请使用size大小的内存;
<span> 1:</span><span>static</span> <span>void</span> *登录后复制<span> 2:</span> ngx_palloc_block(ngx_pool_t *pool, size_t size)登录后复制<span> 3:</span> {登录后复制<span> 4:</span> u_char *m;登录后复制<span> 5:</span> size_t psize;登录后复制<span> 6:</span> ngx_pool_t *p, *new;登录后复制<span> 7:</span>登录后复制<span> 8:</span> //计算内存池第一个内存块的大小登录后复制<span> 9:</span> psize = (size_t) (pool->d.end - (u_char *) pool);登录后复制<span> 10:</span>登录后复制<span> 11:</span> //分配和第一个内存块同样大小的内存块登录后复制<span> 12:</span> m = ngx_memalign(NGX_POOL_ALIGNMENT, psize, pool->log);登录后复制<span> 13:</span> if (m == NULL) {登录后复制<span> 14:</span> return NULL;登录后复制<span> 15:</span> }登录后复制<span> 16:</span>登录后复制<span> 17:</span> new = (ngx_pool_t *) m;登录后复制<span> 18:</span>登录后复制<span> 19:</span> //设置新内存块的end登录后复制<span> 20:</span> new->d.end = m + psize;登录后复制<span> 21:</span> <span>new</span>->d.next = NULL;登录后复制<span> 22:</span> <span>new</span>->d.failed = 0;登录后复制<span> 23:</span>登录后复制<span> 24:</span> <span>//将指针m移动到d后面的一个位置,作为起始位置</span>登录后复制<span> 25:</span> m += <span>sizeof</span>(ngx_pool_data_t);登录后复制<span> 26:</span> //对m指针按4字节对齐处理登录后复制<span> 27:</span> m = ngx_align_ptr(m, NGX_ALIGNMENT);登录后复制<span> 28:</span> //设置新内存块的last,即申请使用size大小的内存登录后复制<span> 29:</span> new->d.last = m + size;登录后复制<span> 30:</span>登录后复制<span> 31:</span> <span>//这里的循环用来找最后一个链表节点,这里failed用来控制循环的长度,如果分配失败次数达到5次,就忽略,不需要每次都从头找起</span>登录后复制<span> 32:</span> for (p = pool->current; p->d.next; p = p->d.next) {登录后复制<span> 33:</span> <span>if</span> (p->d.failed++ > 4) {登录后复制<span> 34:</span> pool->current = p->d.next;登录后复制<span> 35:</span> }登录后复制<span> 36:</span> }登录后复制<span> 37:</span>登录后复制<span> 38:</span> p->d.next = <span>new</span>;登录后复制<span> 39:</span>登录后复制<span> 40:</span> <span>return</span> m;登录后复制<span> 41:</span> }登录后复制
3、分配大块内存 ngx_palloc_large(ngx_pool_t *pool, size_t size)
在ngx_palloc中首先会判断申请的内存大小是否超过内存块的最大限值,如果超过,则直接调用ngx_palloc_large,进入大内存块的分配流程;
<span> 1:</span><span>static</span> <span>void</span> *登录后复制<span> 2:</span> ngx_palloc_large(ngx_pool_t *pool, size_t size)登录后复制<span> 3:</span> {登录后复制<span> 4:</span> <span>void</span> *p;登录后复制<span> 5:</span> ngx_uint_t n;登录后复制<span> 6:</span> ngx_pool_large_t *large;登录后复制<span> 7:</span>登录后复制<span> 8:</span> // 直接在系统堆中分配一块大小为size的空间登录后复制<span> 9:</span> p = ngx_alloc(size, pool->log);登录后复制<span> 10:</span> if (p == NULL) {登录后复制<span> 11:</span> return NULL;登录后复制<span> 12:</span> }登录后复制<span> 13:</span>登录后复制<span> 14:</span> n = 0;登录后复制<span> 15:</span>登录后复制<span> 16:</span> // 查找到一个空的large区,如果有,则将刚才分配的空间交由它管理登录后复制<span> 17:</span> for (large = pool->large; large; large = large->next) {登录后复制<span> 18:</span> if (large->alloc == NULL) {登录后复制<span> 19:</span> large->alloc = p;登录后复制<span> 20:</span> return p;登录后复制<span> 21:</span> }登录后复制<span> 22:</span> <span>//为了提高效率, 如果在三次内没有找到空的large结构体,则创建一个</span>登录后复制<span> 23:</span> if (n++ > 3) {登录后复制<span> 24:</span> <span>break</span>;登录后复制<span> 25:</span> }登录后复制<span> 26:</span> }登录后复制<span> 27:</span>登录后复制<span> 28:</span>登录后复制<span> 29:</span> large = ngx_palloc(pool, sizeof(ngx_pool_large_t));登录后复制<span> 30:</span> if (large == NULL) {登录后复制<span> 31:</span> ngx_free(p);登录后复制<span> 32:</span> return NULL;登录后复制<span> 33:</span> }登录后复制<span> 34:</span>登录后复制<span> 35:</span> <span>//将large链接到内存池</span>登录后复制<span> 36:</span> large->alloc = p;登录后复制<span> 37:</span> large->next = pool->large;登录后复制<span> 38:</span> pool->large = large;登录后复制<span> 39:</span>登录后复制<span> 40:</span> <span>return</span> p;登录后复制<span> 41:</span> }登录后复制
整个内存池分配如下图:
4.3 内存池重置 ngx_reset_pool
<span> 1:</span><span>void</span>登录后复制<span> 2:</span> ngx_reset_pool(ngx_pool_t *pool)登录后复制<span> 3:</span> {登录后复制<span> 4:</span> ngx_pool_t *p;登录后复制<span> 5:</span> ngx_pool_large_t *l;登录后复制<span> 6:</span>登录后复制<span> 7:</span> //释放大块内存登录后复制<span> 8:</span> for (l = pool->large; l; l = l->next) {登录后复制<span> 9:</span> if (l->alloc) {登录后复制<span> 10:</span> ngx_free(l->alloc);登录后复制<span> 11:</span> }登录后复制<span> 12:</span> }登录后复制<span> 13:</span>登录后复制<span> 14:</span> // 重置所有小块内存区登录后复制<span> 15:</span> for (p = pool; p; p = p->d.next) {登录后复制<span> 16:</span> p->d.last = (u_char *) p + sizeof(ngx_pool_t);登录后复制<span> 17:</span> p->d.failed = 0;登录后复制<span> 18:</span> }登录后复制<span> 19:</span>登录后复制<span> 20:</span> pool->current = pool;登录后复制<span> 21:</span> pool->chain = NULL;登录后复制<span> 22:</span> pool->large = NULL;登录后复制<span> 23:</span> }登录后复制
4.4 内存池释放 ngx_pfree
<span> 1:</span> ngx_int_t
<span> 2:</span> ngx_pfree(ngx_pool_t *pool, <span>void</span> *p)
<span> 3:</span> {<span> 4:</span> ngx_pool_large_t *l;
<span> 5:</span>
<span> 6:</span> //只检查是否是大内存块,如果是大内存块则释放<span> 7:</span> for (l = pool->large; l; l = l->next) {<span> 8:</span> if (p == l->alloc) {<span> 9:</span> ngx_log_debug1(NGX_LOG_DEBUG_ALLOC, pool->log, 0,
<span> 10:</span> "free: %p", l->alloc);<span> 11:</span> ngx_free(l->alloc);
<span> 12:</span> l->alloc = NULL;
<span> 13:</span>
<span> 14:</span> return NGX_OK;<span> 15:</span> }
<span> 16:</span> }
<span> 17:</span>
每个人都需要一台速度更快、更稳定的 PC。随着时间的推移,垃圾文件、旧注册表数据和不必要的后台进程会占用资源并降低性能。幸运的是,许多工具可以让 Windows 保持平稳运行。
Copyright 2014-2025 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号