0

0

朴素贝叶斯算法的python实现

大家讲道理

大家讲道理

发布时间:2016-11-07 16:53:39

|

1814人浏览过

|

来源于php中文网

原创

算法优缺点

优点:在数据较少的情况下依然有效,可以处理多类别问题

缺点:对输入数据的准备方式敏感

适用数据类型:标称型数据

算法思想:

立即学习Python免费学习笔记(深入)”;

朴素贝叶斯

比如我们想判断一个邮件是不是垃圾邮件,那么我们知道的是这个邮件中的词的分布,那么我们还要知道:垃圾邮件中某些词的出现是多少,就可以利用贝叶斯定理得到。

朴素贝叶斯分类器中的一个假设是:每个特征同等重要

贝叶斯分类是一类分类算法的总称,这类算法均以贝叶斯定理为基础,故统称为贝叶斯分类。

函数

loadDataSet()

创建数据集,这里的数据集是已经拆分好的单词组成的句子,表示的是某论坛的用户评论,标签1表示这个是骂人的

createVocabList(dataSet)

Originality AI
Originality AI

专门为网络出版商设计的抄袭和AI检测工具

下载

找出这些句子中总共有多少单词,以确定我们词向量的大小

setOfWords2Vec(vocabList, inputSet)

将句子根据其中的单词转成向量,这里用的是伯努利模型,即只考虑这个单词是否存在

bagOfWords2VecMN(vocabList, inputSet)

这个是将句子转成向量的另一种模型,多项式模型,考虑某个词的出现次数

trainNB0(trainMatrix,trainCatergory)

计算P(i)和P(w[i]|C[1])和P(w[i]|C[0]),这里有两个技巧,一个是开始的分子分母没有全部初始化为0是为了防止其中一个的概率为0导致整体为0,另一个是后面乘用对数防止因为精度问题结果为0

classifyNB(vec2Classify, p0Vec, p1Vec, pClass1)

根据贝叶斯公式计算这个向量属于两个集合中哪个的概率高

#coding=utf-8
from numpy import *
def loadDataSet():
    postingList=[['my', 'dog', 'has', 'flea', 'problems', 'help', 'please'],
                 ['maybe', 'not', 'take', 'him', 'to', 'dog', 'park', 'stupid'],
                 ['my', 'dalmation', 'is', 'so', 'cute', 'I', 'love', 'him'],
                 ['stop', 'posting', 'stupid', 'worthless', 'garbage'],
                 ['mr', 'licks', 'ate', 'my', 'steak', 'how', 'to', 'stop', 'him'],
                 ['quit', 'buying', 'worthless', 'dog', 'food', 'stupid']]
    classVec = [0,1,0,1,0,1]    #1 is abusive, 0 not
    return postingList,classVec
#创建一个带有所有单词的列表
def createVocabList(dataSet):
    vocabSet = set([])
    for document in dataSet:
        vocabSet = vocabSet | set(document)
    return list(vocabSet)
     
def setOfWords2Vec(vocabList, inputSet):
    retVocabList = [0] * len(vocabList)
    for word in inputSet:
        if word in vocabList:
            retVocabList[vocabList.index(word)] = 1
        else:
            print 'word ',word ,'not in dict'
    return retVocabList
#另一种模型    
def bagOfWords2VecMN(vocabList, inputSet):
    returnVec = [0]*len(vocabList)
    for word in inputSet:
        if word in vocabList:
            returnVec[vocabList.index(word)] += 1
    return returnVec
def trainNB0(trainMatrix,trainCatergory):
    numTrainDoc = len(trainMatrix)
    numWords = len(trainMatrix[0])
    pAbusive = sum(trainCatergory)/float(numTrainDoc)
    #防止多个概率的成绩当中的一个为0
    p0Num = ones(numWords)
    p1Num = ones(numWords)
    p0Denom = 2.0
    p1Denom = 2.0
    for i in range(numTrainDoc):
        if trainCatergory[i] == 1:
            p1Num +=trainMatrix[i]
            p1Denom += sum(trainMatrix[i])
        else:
            p0Num +=trainMatrix[i]
            p0Denom += sum(trainMatrix[i])
    p1Vect = log(p1Num/p1Denom)#处于精度的考虑,否则很可能到限归零
    p0Vect = log(p0Num/p0Denom)
    return p0Vect,p1Vect,pAbusive
     
def classifyNB(vec2Classify, p0Vec, p1Vec, pClass1):
    p1 = sum(vec2Classify * p1Vec) + log(pClass1)    #element-wise mult
    p0 = sum(vec2Classify * p0Vec) + log(1.0 - pClass1)
    if p1 > p0:
        return 1
    else: 
        return 0
         
def testingNB():
    listOPosts,listClasses = loadDataSet()
    myVocabList = createVocabList(listOPosts)
    trainMat=[]
    for postinDoc in listOPosts:
        trainMat.append(setOfWords2Vec(myVocabList, postinDoc))
    p0V,p1V,pAb = trainNB0(array(trainMat),array(listClasses))
    testEntry = ['love', 'my', 'dalmation']
    thisDoc = array(setOfWords2Vec(myVocabList, testEntry))
    print testEntry,'classified as: ',classifyNB(thisDoc,p0V,p1V,pAb)
    testEntry = ['stupid', 'garbage']
    thisDoc = array(setOfWords2Vec(myVocabList, testEntry))
    print testEntry,'classified as: ',classifyNB(thisDoc,p0V,p1V,pAb)
     
     
def main():
    testingNB()
     
if __name__ == '__main__':
    main()

   

相关文章

python速学教程(入门到精通)
python速学教程(入门到精通)

python怎么学习?python怎么入门?python在哪学?python怎么学才快?不用担心,这里为大家提供了python速学教程(入门到精通),有需要的小伙伴保存下载就能学习啦!

下载

相关标签:

本站声明:本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn

相关专题

更多
c++主流开发框架汇总
c++主流开发框架汇总

本专题整合了c++开发框架推荐,阅读专题下面的文章了解更多详细内容。

77

2026.01.09

c++框架学习教程汇总
c++框架学习教程汇总

本专题整合了c++框架学习教程汇总,阅读专题下面的文章了解更多详细内容。

45

2026.01.09

学python好用的网站推荐
学python好用的网站推荐

本专题整合了python学习教程汇总,阅读专题下面的文章了解更多详细内容。

118

2026.01.09

学python网站汇总
学python网站汇总

本专题整合了学python网站汇总,阅读专题下面的文章了解更多详细内容。

10

2026.01.09

python学习网站
python学习网站

本专题整合了python学习相关推荐汇总,阅读专题下面的文章了解更多详细内容。

14

2026.01.09

俄罗斯手机浏览器地址汇总
俄罗斯手机浏览器地址汇总

汇总俄罗斯Yandex手机浏览器官方网址入口,涵盖国际版与俄语版,适配移动端访问,一键直达搜索、地图、新闻等核心服务。

70

2026.01.09

漫蛙稳定版地址大全
漫蛙稳定版地址大全

漫蛙稳定版地址大全汇总最新可用入口,包含漫蛙manwa漫画防走失官网链接,确保用户随时畅读海量正版漫画资源,建议收藏备用,避免因域名变动无法访问。

324

2026.01.09

php学习网站大全
php学习网站大全

精选多个优质PHP入门学习网站,涵盖教程、实战与文档,适合零基础到进阶开发者,助你高效掌握PHP编程。

42

2026.01.09

php网站搭建教程大全
php网站搭建教程大全

本合集专为零基础用户打造,涵盖PHP网站搭建全流程,从环境配置到实战开发,免费、易懂、系统化,助你快速入门建站!

12

2026.01.09

热门下载

更多
网站特效
/
网站源码
/
网站素材
/
前端模板

精品课程

更多
相关推荐
/
热门推荐
/
最新课程
最新Python教程 从入门到精通
最新Python教程 从入门到精通

共4课时 | 0.6万人学习

Django 教程
Django 教程

共28课时 | 3万人学习

SciPy 教程
SciPy 教程

共10课时 | 1.1万人学习

关于我们 免责申明 举报中心 意见反馈 讲师合作 广告合作 最新更新
php中文网:公益在线php培训,帮助PHP学习者快速成长!
关注服务号 技术交流群
PHP中文网订阅号
每天精选资源文章推送

Copyright 2014-2026 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号