WeakHash Map 继承 于AbstractMap,同时实现了Map接口 。
和HashMap一样,WeakHashMap也是一个散列表,存储的内容也是键值对 key -value映射,并且键和值都可以是null 。WeakHashMap的键都是弱键,给定一个键,其映射的存在并不阻止垃圾回收器对该键的丢弃,使该键成为可终止,然后被回收。弱键的原理就是Entry继承了WeakReference接口,当GC 回收时,”弱键“同时也会被添加到ReferenceQueue队列 中。
实现的步骤:
(1)新建WeakHashMap,将键值对添加到WeakHashMap中,WeakHashMap同样也是通过table保存Entry(键值对),每一个Entry实际上是一个单向链表。
(2)当某个弱键不再被其他对象 引用,并被GC回收时,在GC回收该弱键时,这个弱键也同时会被添加到ReferenceQueue(queue)队列中。
(3)下一次需要操作WeakHashMap时,会先同步table和queue。table中保存了全部的键值对,而queue中保存被GC回收的键值对,同时会删除table中被GC回收的键值对。WeakHashMap也不是线程安全的。
WeakHashMap的关系图:
(1)WeakHashMap继承于AbstractMap,并且实现了Map接口。
(2)WeakHashMap是哈希表,它的键时弱键,WeakHashMap同样有几个重要的成员变量 :table,size,threshold,loadFactor,modCount,queue。
table一个Entry[]数组 类型,而每个Entry实际上就是一个单向链表,哈希表的key-value键值对都是存储在Entry数组中的。
size是Hashtable的大小,它是Hashtable保存的键值对的数量。
threshold是Hashtable的阈值,用于判断是否需要调整Hashtable的容量。threshold的值=”容量*加载因子“
loadFactor加载因子
modCount是用来实现fail-fast机制
queue保存的是已经被GC清楚的弱引用的键。
WeakHashMap主要的Map 0
clear()
Object clone()
containsKey(Object key)
containsValue(Object value)
Set<<>> entrySet()
V get(Object key)
isEmpty()
Set<> keySet()
V put(K keyV value)
putAll(Map K? V> map)
V remove(Object key)
size()
Collection<> values() weakhashmap的遍历方式
(1)遍历WeakHashMap的键值对:首先根据entrySet()获得键值对集合,然后对集合通过迭代器Iterator遍历得到键值。
Integer integ = Iterator iter = map.entrySet().iterator()(iter.hasNext())
{
Map.Entry entry = (Map.Entry)iter.next()key = (String)entry.getKey()integ = (Integer)entry.getValue()} (2)遍历WeakHashMap的键:首先通过keySet()获取WeakHashMap的键的set集合,通过Iterator迭代器遍历集合来获得键值。
String key = Integer integ = Iterator iter = map.keySet().iterator()(iter.hasNext()) {
key = (String)iter.next() integ = (Integer)map.get(key)} (3)遍历WeakHashMap的值:首先通过values()获取WeakHashMap的value集合,然后对集合进行迭代获得数据。
Snowy(SnowyAdmin)快速开发平台3.5.1
Snowy(SnowyAdmin)是国内首个国密前后端分离快速开发平台,集成国密加解密插件, 软件层面完全符合等保测评要求,同时实现国产化机型、中间件、数据库适配,是您的不二之选! 技术框架与密码结合,让更多的人认识密码,使用密码;更是让前后分离“密”不可分。采用SpringBoot+MybatisPlus+AntDesignVue+Vite 等更多组件及前沿技术开发,注释丰富,代码简洁,开箱即用
下载
Integer value = Collection c = map.values()Iterator iter= c.iterator()(iter.hasNext())
{
value = (Integer)iter.next()} WeakHashMap示例程序:
public class Hello {
public static void main(String[] args) throws Exception {
testWeakHashMapAPIs();
}
private static void testWeakHashMapAPIs()
{
// 初始化3个“弱键”
String w1 = new String("one");
String w2 = new String("two");
String w3 = new String("three");
// 新建WeakHashMap
Map wmap = new WeakHashMap();
// 添加键值对
wmap.put(w1, "w1");
wmap.put(w2, "w2");
wmap.put(w3, "w3");
// 打印出wmap
System.out.printf("\nwmap:%s\n",wmap );
// containsKey(Object key) :是否包含键key
System.out.printf("contains key two : %s\n",wmap.containsKey("two"));
System.out.printf("contains key five : %s\n",wmap.containsKey("five"));
// containsValue(Object value) :是否包含值value
System.out.printf("contains value 0 : %s\n",wmap.containsValue(new Integer(0)));
// remove(Object key) : 删除键key对应的键值对
wmap.remove("three");
System.out.printf("wmap: %s\n",wmap );
// ---- 测试 WeakHashMap 的自动回收特性 ----
// 将w1设置null。
// 这意味着“弱键”w1再没有被其它对象引用,调用gc时会回收WeakHashMap中与“w1”对应的键值对
w1 = null;
// 内存回收。这里,会回收WeakHashMap中与“w1”对应的键值对
System.gc();
// 遍历WeakHashMap
Iterator iter = wmap.entrySet().iterator();
while (iter.hasNext())
{
Map.Entry en = (Map.Entry)iter.next();
System.out.printf("next : %s - %s\n",en.getKey(),en.getValue());
}
// 打印WeakHashMap的实际大小
System.out.printf(" after gc WeakHashMap size:%s\n", wmap.size());
}
}
运行结果:
wmap:{three=w3, one=w1, two=w2}
contains key two : true
contains key five : false
contains value 0 : false
wmap: {one=w1, two=w2}
next : two - w2
after gc WeakHashMap size:1
基于Java8的WeakHashMap源代码:
public class WeakHashMap extends AbstractMap
implements Map {
private static final int DEFAULT_INITIAL_CAPACITY = 16;//默认初始大小,必须是2的次幂
private static final int MAXIMUM_CAPACITY = 1 << 30;//最大值2的30次方
private static final float DEFAULT_LOAD_FACTOR = 0.75f;//加载因子
Entry[] table;
private int size;//数目
private int threshold;//阈值
private final float loadFactor;//加载因子
private final ReferenceQueue queue = new ReferenceQueue<>();//引用队列
int modCount;//fail-fast
@SuppressWarnings("unchecked")
private Entry[] newTable(int n) {
return (Entry[]) new Entry,?>[n];
}
//构造函数
public WeakHashMap(int initialCapacity, float loadFactor) {
if (initialCapacity < 0)
throw new IllegalArgumentException("Illegal Initial Capacity: "+
initialCapacity);
if (initialCapacity > MAXIMUM_CAPACITY)
initialCapacity = MAXIMUM_CAPACITY;
if (loadFactor <= 0 || Float.isNaN(loadFactor))
throw new IllegalArgumentException("Illegal Load factor: "+
loadFactor);
int capacity = 1;
while (capacity < initialCapacity)
capacity <<= 1;
table = newTable(capacity);
this.loadFactor = loadFactor;
threshold = (int)(capacity * loadFactor);
}
//初始值的构造函数
public WeakHashMap(int initialCapacity) {
this(initialCapacity, DEFAULT_LOAD_FACTOR);
}
//构造函数
public WeakHashMap() {
this(DEFAULT_INITIAL_CAPACITY, DEFAULT_LOAD_FACTOR);
}
public WeakHashMap(Map extends K, ? extends V> m) {
this(Math.max((int) (m.size() / DEFAULT_LOAD_FACTOR) + 1,
DEFAULT_INITIAL_CAPACITY),
DEFAULT_LOAD_FACTOR);
putAll(m);
}
// internal utilities
/**
* Value representing null keys inside tables.
*/
private static final Object NULL_KEY = new Object();
/**
* Use NULL_KEY for key if it is null.
*/
private static Object maskNull(Object key) {
return (key == null) ? NULL_KEY : key;
}
/**
* Returns internal representation of null key back to caller as null.
*/
static Object unmaskNull(Object key) {
return (key == NULL_KEY) ? null : key;
}
/**
* Checks for equality of non-null reference x and possibly-null y. By
* default uses Object.equals.
*/
private static boolean eq(Object x, Object y) {
return x == y || x.equals(y);
}
/**
* Retrieve object hash code and applies a supplemental hash function to the
* result hash, which defends against poor quality hash functions. This is
* critical because HashMap uses power-of-two length hash tables, that
* otherwise encounter collisions for hashCodes that do not differ
* in lower bits.
*/
//计算k的hash
final int hash(Object k) {
int h = k.hashCode();
// This function ensures that hashCodes that differ only by
// constant multiples at each bit position have a bounded
// number of collisions (approximately 8 at default load factor).
h ^= (h >>> 20) ^ (h >>> 12);
return h ^ (h >>> 7) ^ (h >>> 4);
}
/**
* Returns index for hash code h.
*/
private static int indexFor(int h, int length) {
return h & (length-1);
}
/**
* Expunges stale entries from the table.
*/
private void expungeStaleEntries() {
for (Object x; (x = queue.poll()) != null; ) {
synchronized (queue) {
@SuppressWarnings("unchecked")
Entry e = (Entry) x;
int i = indexFor(e.hash, table.length);
Entry prev = table[i];
Entry p = prev;
while (p != null) {
Entry next = p.next;
if (p == e) {
if (prev == e)
table[i] = next;
else
prev.next = next;
// Must not null out e.next;
// stale entries may be in use by a HashIterator
e.value = null; // Help GC
size--;
break;
}
prev = p;
p = next;
}
}
}
}
/**
* Returns the table after first expunging stale entries.
*/
private Entry[] getTable() {
expungeStaleEntries();
return table;
}
/**
* Returns the number of key-value mappings in this map.
* This result is a snapshot, and may not reflect unprocessed
* entries that will be removed before next attempted access
* because they are no longer referenced.
*/
//返回数目
public int size() {
if (size == 0)
return 0;
expungeStaleEntries();
return size;
}
/**
* Returns true if this map contains no key-value mappings.
* This result is a snapshot, and may not reflect unprocessed
* entries that will be removed before next attempted access
* because they are no longer referenced.
*/
//判断是否为空
public boolean isEmpty() {
return size() == 0;
}
/**
* Returns the value to which the specified key is mapped,
* or {@code null} if this map contains no mapping for the key.
*
* More formally, if this map contains a mapping from a key
* {@code k} to a value {@code v} such that {@code (key==null ? k==null :
* key.equals(k))}, then this method returns {@code v}; otherwise
* it returns {@code null}. (There can be at most one such mapping.)
*
*
A return value of {@code null} does not necessarily
* indicate that the map contains no mapping for the key; it's also
* possible that the map explicitly maps the key to {@code null}.
* The {@link #containsKey containsKey} operation may be used to
* distinguish these two cases.
*
* @see #put(Object, Object)
*/
//通过key获得value
public V get(Object key) {
Object k = maskNull(key);
int h = hash(k);
Entry[] tab = getTable();
int index = indexFor(h, tab.length);
Entry e = tab[index];
while (e != null) {
if (e.hash == h && eq(k, e.get()))
return e.value;
e = e.next;
}
return null;
}
/**
* Returns true if this map contains a mapping for the
* specified key.
*
* @param key The key whose presence in this map is to be tested
* @return true if there is a mapping for key ;
* false otherwise
*/
//判断是否包含某个key
public boolean containsKey(Object key) {
return getEntry(key) != null;
}
/**
* Returns the entry associated with the specified key in this map.
* Returns null if the map contains no mapping for this key.
*/
//通过key获得entry
Entry getEntry(Object key) {
Object k = maskNull(key);
int h = hash(k);
Entry[] tab = getTable();
int index = indexFor(h, tab.length);
Entry e = tab[index];
while (e != null && !(e.hash == h && eq(k, e.get())))
e = e.next;
return e;
}
/**
* Associates the specified value with the specified key in this map.
* If the map previously contained a mapping for this key, the old
* value is replaced.
*
* @param key key with which the specified value is to be associated.
* @param value value to be associated with the specified key.
* @return the previous value associated with key , or
* null if there was no mapping for key .
* (A null return can also indicate that the map
* previously associated null with key .)
*/
//插入key和value
public V put(K key, V value) {
Object k = maskNull(key);
int h = hash(k);
Entry[] tab = getTable();
int i = indexFor(h, tab.length);
for (Entry e = tab[i]; e != null; e = e.next) {
if (h == e.hash && eq(k, e.get())) {
V oldValue = e.value;
if (value != oldValue)
e.value = value;
return oldValue;
}
}
modCount++;
Entry e = tab[i];
tab[i] = new Entry<>(k, value, queue, h, e);
if (++size >= threshold)
resize(tab.length * 2);
return null;
}
/**
* Rehashes the contents of this map into a new array with a
* larger capacity. This method is called automatically when the
* number of keys in this map reaches its threshold.
*
* If current capacity is MAXIMUM_CAPACITY, this method does not
* resize the map, but sets threshold to Integer.MAX_VALUE.
* This has the effect of preventing future calls.
*
* @param newCapacity the new capacity, MUST be a power of two;
* must be greater than current capacity unless current
* capacity is MAXIMUM_CAPACITY (in which case value
* is irrelevant).
*/
//跳转大小
void resize(int newCapacity) {
Entry[] oldTable = getTable();
int oldCapacity = oldTable.length;
if (oldCapacity == MAXIMUM_CAPACITY) {
threshold = Integer.MAX_VALUE;
return;
}
Entry[] newTable = newTable(newCapacity);
transfer(oldTable, newTable);
table = newTable;
/*
* If ignoring null elements and processing ref queue caused massive
* shrinkage, then restore old table. This should be rare, but avoids
* unbounded expansion of garbage-filled tables.
*/
if (size >= threshold / 2) {
threshold = (int)(newCapacity * loadFactor);
} else {
expungeStaleEntries();
transfer(newTable, oldTable);
table = oldTable;
}
}
/** Transfers all entries from src to dest tables */
private void transfer(Entry[] src, Entry[] dest) {
for (int j = 0; j < src.length; ++j) {
Entry e = src[j];
src[j] = null;
while (e != null) {
Entry next = e.next;
Object key = e.get();
if (key == null) {
e.next = null; // Help GC
e.value = null; // " "
size--;
} else {
int i = indexFor(e.hash, dest.length);
e.next = dest[i];
dest[i] = e;
}
e = next;
}
}
}
/**
* Copies all of the mappings from the specified map to this map.
* These mappings will replace any mappings that this map had for any
* of the keys currently in the specified map.
*
* @param m mappings to be stored in this map.
* @throws NullPointerException if the specified map is null.
*/
public void putAll(Map extends K, ? extends V> m) {
int numKeysToBeAdded = m.size();
if (numKeysToBeAdded == 0)
return;
/*
* Expand the map if the map if the number of mappings to be added
* is greater than or equal to threshold. This is conservative; the
* obvious condition is (m.size() + size) >= threshold, but this
* condition could result in a map with twice the appropriate capacity,
* if the keys to be added overlap with the keys already in this map.
* By using the conservative calculation, we subject ourself
* to at most one extra resize.
*/
if (numKeysToBeAdded > threshold) {
int targetCapacity = (int)(numKeysToBeAdded / loadFactor + 1);
if (targetCapacity > MAXIMUM_CAPACITY)
targetCapacity = MAXIMUM_CAPACITY;
int newCapacity = table.length;
while (newCapacity < targetCapacity)
newCapacity <<= 1;
if (newCapacity > table.length)
resize(newCapacity);
}
for (Map.Entry extends K, ? extends V> e : m.entrySet())
put(e.getKey(), e.getValue());
}
/**
* Removes the mapping for a key from this weak hash map if it is present.
* More formally, if this map contains a mapping from key k to
* value v such that (key==null ? k==null :
* key.equals(k)), that mapping is removed. (The map can contain
* at most one such mapping.)
*
* Returns the value to which this map previously associated the key,
* or null if the map contained no mapping for the key. A
* return value of null does not necessarily indicate
* that the map contained no mapping for the key; it's also possible
* that the map explicitly mapped the key to null .
*
*
The map will not contain a mapping for the specified key once the
* call returns.
*
* @param key key whose mapping is to be removed from the map
* @return the previous value associated with key , or
* null if there was no mapping for key
*/
//根据key删除
public V remove(Object key) {
Object k = maskNull(key);
int h = hash(k);
Entry[] tab = getTable();
int i = indexFor(h, tab.length);
Entry prev = tab[i];
Entry e = prev;
while (e != null) {
Entry next = e.next;
if (h == e.hash && eq(k, e.get())) {
modCount++;
size--;
if (prev == e)
tab[i] = next;
else
prev.next = next;
return e.value;
}
prev = e;
e = next;
}
return null;
}
/** Special version of remove needed by Entry set */
boolean removeMapping(Object o) {
if (!(o instanceof Map.Entry))
return false;
Entry[] tab = getTable();
Map.Entry,?> entry = (Map.Entry,?>)o;
Object k = maskNull(entry.getKey());
int h = hash(k);
int i = indexFor(h, tab.length);
Entry prev = tab[i];
Entry e = prev;
while (e != null) {
Entry next = e.next;
if (h == e.hash && e.equals(entry)) {
modCount++;
size--;
if (prev == e)
tab[i] = next;
else
prev.next = next;
return true;
}
prev = e;
e = next;
}
return false;
}
/**
* Removes all of the mappings from this map.
* The map will be empty after this call returns.
*/
//清空
public void clear() {
// clear out ref queue. We don't need to expunge entries
// since table is getting cleared.
while (queue.poll() != null)
;
modCount++;
Arrays.fill(table, null);
size = 0;
// Allocation of array may have caused GC, which may have caused
// additional entries to go stale. Removing these entries from the
// reference queue will make them eligible for reclamation.
while (queue.poll() != null)
;
}
/**
* Returns true if this map maps one or more keys to the
* specified value.
*
* @param value value whose presence in this map is to be tested
* @return true if this map maps one or more keys to the
* specified value
*/
//判断是否包含某个值
public boolean containsValue(Object value) {
if (value==null)
return containsNullValue();
Entry[] tab = getTable();
for (int i = tab.length; i-- > 0;)
for (Entry e = tab[i]; e != null; e = e.next)
if (value.equals(e.value))
return true;
return false;
}
/**
* Special-case code for containsValue with null argument
*/
//判断是否有空值
private boolean containsNullValue() {
Entry[] tab = getTable();
for (int i = tab.length; i-- > 0;)
for (Entry e = tab[i]; e != null; e = e.next)
if (e.value==null)
return true;
return false;
}
/**
* The entries in this hash table extend WeakReference, using its main ref
* field as the key.
*/
//entry继承了虚引用
private static class Entry extends WeakReference implements Map.Entry {
V value;
final int hash;
Entry next;
/**
* Creates new entry.
*/
Entry(Object key, V value,
ReferenceQueue queue,
int hash, Entry next) {
super(key, queue);
this.value = value;
this.hash = hash;
this.next = next;
}
@SuppressWarnings("unchecked")
public K getKey() {
return (K) WeakHashMap.unmaskNull(get());
}
public V getValue() {
return value;
}
public V setValue(V newValue) {
V oldValue = value;
value = newValue;
return oldValue;
}
public boolean equals(Object o) {
if (!(o instanceof Map.Entry))
return false;
Map.Entry,?> e = (Map.Entry,?>)o;
K k1 = getKey();
Object k2 = e.getKey();
if (k1 == k2 || (k1 != null && k1.equals(k2))) {
V v1 = getValue();
Object v2 = e.getValue();
if (v1 == v2 || (v1 != null && v1.equals(v2)))
return true;
}
return false;
}
public int hashCode() {
K k = getKey();
V v = getValue();
return Objects.hashCode(k) ^ Objects.hashCode(v);
}
public String toString() {
return getKey() + "=" + getValue();
}
}
private abstract class HashIterator implements Iterator {
private int index;
private Entry entry;
private Entry lastReturned;
private int expectedModCount = modCount;
/**
* Strong reference needed to avoid disappearance of key
* between hasNext and next
*/
private Object nextKey;
/**
* Strong reference needed to avoid disappearance of key
* between nextEntry() and any use of the entry
*/
private Object currentKey;
HashIterator() {
index = isEmpty() ? 0 : table.length;
}
public boolean hasNext() {
Entry[] t = table;
while (nextKey == null) {
Entry e = entry;
int i = index;
while (e == null && i > 0)
e = t[--i];
entry = e;
index = i;
if (e == null) {
currentKey = null;
return false;
}
nextKey = e.get(); // hold on to key in strong ref
if (nextKey == null)
entry = entry.next;
}
return true;
}
/** The common parts of next() across different types of iterators */
protected Entry nextEntry() {
if (modCount != expectedModCount)
throw new ConcurrentModificationException();
if (nextKey == null && !hasNext())
throw new NoSuchElementException();
lastReturned = entry;
entry = entry.next;
currentKey = nextKey;
nextKey = null;
return lastReturned;
}
public void remove() {
if (lastReturned == null)
throw new IllegalStateException();
if (modCount != expectedModCount)
throw new ConcurrentModificationException();
WeakHashMap.this.remove(currentKey);
expectedModCount = modCount;
lastReturned = null;
currentKey = null;
}
}
private class ValueIterator extends HashIterator {
public V next() {
return nextEntry().value;
}
}
private class KeyIterator extends HashIterator {
public K next() {
return nextEntry().getKey();
}
}
private class EntryIterator extends HashIterator> {
public Map.Entry next() {
return nextEntry();
}
}
// Views
private transient Set> entrySet;
/**
* Returns a {@link Set} view of the keys contained in this map.
* The set is backed by the map, so changes to the map are
* reflected in the set, and vice-versa. If the map is modified
* while an iteration over the set is in progress (except through
* the iterator's own remove operation), the results of
* the iteration are undefined. The set supports element removal,
* which removes the corresponding mapping from the map, via the
* Iterator.remove , Set.remove ,
* removeAll , retainAll , and clear
* operations. It does not support the add or addAll
* operations.
*/
public Set keySet() {
Set ks = keySet;
return (ks != null ? ks : (keySet = new KeySet()));
}
private class KeySet extends AbstractSet {
public Iterator iterator() {
return new KeyIterator();
}
public int size() {
return WeakHashMap.this.size();
}
public boolean contains(Object o) {
return containsKey(o);
}
public boolean remove(Object o) {
if (containsKey(o)) {
WeakHashMap.this.remove(o);
return true;
}
else
return false;
}
public void clear() {
WeakHashMap.this.clear();
}
public Spliterator spliterator() {
return new KeySpliterator<>(WeakHashMap.this, 0, -1, 0, 0);
}
}
/**
* Returns a {@link Collection} view of the values contained in this map.
* The collection is backed by the map, so changes to the map are
* reflected in the collection, and vice-versa. If the map is
* modified while an iteration over the collection is in progress
* (except through the iterator's own remove operation),
* the results of the iteration are undefined. The collection
* supports element removal, which removes the corresponding
* mapping from the map, via the Iterator.remove ,
* Collection.remove , removeAll ,
* retainAll and clear operations. It does not
* support the add or addAll operations.
*/
public Collection values() {
Collection vs = values;
return (vs != null) ? vs : (values = new Values());
}
private class Values extends AbstractCollection {
public Iterator iterator() {
return new ValueIterator();
}
public int size() {
return WeakHashMap.this.size();
}
public boolean contains(Object o) {
return containsValue(o);
}
public void clear() {
WeakHashMap.this.clear();
}
public Spliterator spliterator() {
return new ValueSpliterator<>(WeakHashMap.this, 0, -1, 0, 0);
}
}
/**
* Returns a {@link Set} view of the mappings contained in this map.
* The set is backed by the map, so changes to the map are
* reflected in the set, and vice-versa. If the map is modified
* while an iteration over the set is in progress (except through
* the iterator's own remove operation, or through the
* setValue operation on a map entry returned by the
* iterator) the results of the iteration are undefined. The set
* supports element removal, which removes the corresponding
* mapping from the map, via the Iterator.remove ,
* Set.remove , removeAll , retainAll and
* clear operations. It does not support the
* add or addAll operations.
*/
public Set> entrySet() {
Set> es = entrySet;
return es != null ? es : (entrySet = new EntrySet());
}
private class EntrySet extends AbstractSet> {
public Iterator> iterator() {
return new EntryIterator();
}
public boolean contains(Object o) {
if (!(o instanceof Map.Entry))
return false;
Map.Entry,?> e = (Map.Entry,?>)o;
Entry candidate = getEntry(e.getKey());
return candidate != null && candidate.equals(e);
}
public boolean remove(Object o) {
return removeMapping(o);
}
public int size() {
return WeakHashMap.this.size();
}
public void clear() {
WeakHashMap.this.clear();
}
private List> deepCopy() {
List> list = new ArrayList<>(size());
for (Map.Entry e : this)
list.add(new AbstractMap.SimpleEntry<>(e));
return list;
}
public Object[] toArray() {
return deepCopy().toArray();
}
public T[] toArray(T[] a) {
return deepCopy().toArray(a);
}
public Spliterator> spliterator() {
return new EntrySpliterator<>(WeakHashMap.this, 0, -1, 0, 0);
}
}
@SuppressWarnings("unchecked")
@Override
public void forEach(BiConsumer super K, ? super V> action) {
Objects.requireNonNull(action);
int expectedModCount = modCount;
Entry[] tab = getTable();
for (Entry entry : tab) {
while (entry != null) {
Object key = entry.get();
if (key != null) {
action.accept((K)WeakHashMap.unmaskNull(key), entry.value);
}
entry = entry.next;
if (expectedModCount != modCount) {
throw new ConcurrentModificationException();
}
}
}
}
@SuppressWarnings("unchecked")
@Override
public void replaceAll(BiFunction super K, ? super V, ? extends V> function) {
Objects.requireNonNull(function);
int expectedModCount = modCount;
Entry[] tab = getTable();;
for (Entry entry : tab) {
while (entry != null) {
Object key = entry.get();
if (key != null) {
entry.value = function.apply((K)WeakHashMap.unmaskNull(key), entry.value);
}
entry = entry.next;
if (expectedModCount != modCount) {
throw new ConcurrentModificationException();
}
}
}
}
/**
* Similar form as other hash Spliterators, but skips dead
* elements.
*/
static class WeakHashMapSpliterator {
final WeakHashMap map;
WeakHashMap.Entry current; // current node
int index; // current index, modified on advance/split
int fence; // -1 until first use; then one past last index
int est; // size estimate
int expectedModCount; // for comodification checks
WeakHashMapSpliterator(WeakHashMap m, int origin,
int fence, int est,
int expectedModCount) {
this.map = m;
this.index = origin;
this.fence = fence;
this.est = est;
this.expectedModCount = expectedModCount;
}
final int getFence() { // initialize fence and size on first use
int hi;
if ((hi = fence) < 0) {
WeakHashMap m = map;
est = m.size();
expectedModCount = m.modCount;
hi = fence = m.table.length;
}
return hi;
}
public final long estimateSize() {
getFence(); // force init
return (long) est;
}
}
static final class KeySpliterator
extends WeakHashMapSpliterator
implements Spliterator {
KeySpliterator(WeakHashMap m, int origin, int fence, int est,
int expectedModCount) {
super(m, origin, fence, est, expectedModCount);
}
public KeySpliterator trySplit() {
int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
return (lo >= mid) ? null :
new KeySpliterator(map, lo, index = mid, est >>>= 1,
expectedModCount);
}
public void forEachRemaining(Consumer super K> action) {
int i, hi, mc;
if (action == null)
throw new NullPointerException();
WeakHashMap m = map;
WeakHashMap.Entry[] tab = m.table;
if ((hi = fence) < 0) {
mc = expectedModCount = m.modCount;
hi = fence = tab.length;
}
else
mc = expectedModCount;
if (tab.length >= hi && (i = index) >= 0 &&
(i < (index = hi) || current != null)) {
WeakHashMap.Entry p = current;
current = null; // exhaust
do {
if (p == null)
p = tab[i++];
else {
Object x = p.get();
p = p.next;
if (x != null) {
@SuppressWarnings("unchecked") K k =
(K) WeakHashMap.unmaskNull(x);
action.accept(k);
}
}
} while (p != null || i < hi);
}
if (m.modCount != mc)
throw new ConcurrentModificationException();
}
public boolean tryAdvance(Consumer super K> action) {
int hi;
if (action == null)
throw new NullPointerException();
WeakHashMap.Entry[] tab = map.table;
if (tab.length >= (hi = getFence()) && index >= 0) {
while (current != null || index < hi) {
if (current == null)
current = tab[index++];
else {
Object x = current.get();
current = current.next;
if (x != null) {
@SuppressWarnings("unchecked") K k =
(K) WeakHashMap.unmaskNull(x);
action.accept(k);
if (map.modCount != expectedModCount)
throw new ConcurrentModificationException();
return true;
}
}
}
}
return false;
}
public int characteristics() {
return Spliterator.DISTINCT;
}
}
static final class ValueSpliterator
extends WeakHashMapSpliterator
implements Spliterator {
ValueSpliterator(WeakHashMap m, int origin, int fence, int est,
int expectedModCount) {
super(m, origin, fence, est, expectedModCount);
}
public ValueSpliterator trySplit() {
int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
return (lo >= mid) ? null :
new ValueSpliterator(map, lo, index = mid, est >>>= 1,
expectedModCount);
}
public void forEachRemaining(Consumer super V> action) {
int i, hi, mc;
if (action == null)
throw new NullPointerException();
WeakHashMap m = map;
WeakHashMap.Entry[] tab = m.table;
if ((hi = fence) < 0) {
mc = expectedModCount = m.modCount;
hi = fence = tab.length;
}
else
mc = expectedModCount;
if (tab.length >= hi && (i = index) >= 0 &&
(i < (index = hi) || current != null)) {
WeakHashMap.Entry p = current;
current = null; // exhaust
do {
if (p == null)
p = tab[i++];
else {
Object x = p.get();
V v = p.value;
p = p.next;
if (x != null)
action.accept(v);
}
} while (p != null || i < hi);
}
if (m.modCount != mc)
throw new ConcurrentModificationException();
}
public boolean tryAdvance(Consumer super V> action) {
int hi;
if (action == null)
throw new NullPointerException();
WeakHashMap.Entry[] tab = map.table;
if (tab.length >= (hi = getFence()) && index >= 0) {
while (current != null || index < hi) {
if (current == null)
current = tab[index++];
else {
Object x = current.get();
V v = current.value;
current = current.next;
if (x != null) {
action.accept(v);
if (map.modCount != expectedModCount)
throw new ConcurrentModificationException();
return true;
}
}
}
}
return false;
}
public int characteristics() {
return 0;
}
}
static final class EntrySpliterator
extends WeakHashMapSpliterator
implements Spliterator> {
EntrySpliterator(WeakHashMap m, int origin, int fence, int est,
int expectedModCount) {
super(m, origin, fence, est, expectedModCount);
}
public EntrySpliterator trySplit() {
int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
return (lo >= mid) ? null :
new EntrySpliterator(map, lo, index = mid, est >>>= 1,
expectedModCount);
}
public void forEachRemaining(Consumer super Map.Entry> action) {
int i, hi, mc;
if (action == null)
throw new NullPointerException();
WeakHashMap m = map;
WeakHashMap.Entry[] tab = m.table;
if ((hi = fence) < 0) {
mc = expectedModCount = m.modCount;
hi = fence = tab.length;
}
else
mc = expectedModCount;
if (tab.length >= hi && (i = index) >= 0 &&
(i < (index = hi) || current != null)) {
WeakHashMap.Entry p = current;
current = null; // exhaust
do {
if (p == null)
p = tab[i++];
else {
Object x = p.get();
V v = p.value;
p = p.next;
if (x != null) {
@SuppressWarnings("unchecked") K k =
(K) WeakHashMap.unmaskNull(x);
action.accept
(new AbstractMap.SimpleImmutableEntry(k, v));
}
}
} while (p != null || i < hi);
}
if (m.modCount != mc)
throw new ConcurrentModificationException();
}
public boolean tryAdvance(Consumer super Map.Entry> action) {
int hi;
if (action == null)
throw new NullPointerException();
WeakHashMap.Entry[] tab = map.table;
if (tab.length >= (hi = getFence()) && index >= 0) {
while (current != null || index < hi) {
if (current == null)
current = tab[index++];
else {
Object x = current.get();
V v = current.value;
current = current.next;
if (x != null) {
@SuppressWarnings("unchecked") K k =
(K) WeakHashMap.unmaskNull(x);
action.accept
(new AbstractMap.SimpleImmutableEntry(k, v));
if (map.modCount != expectedModCount)
throw new ConcurrentModificationException();
return true;
}
}
}
}
return false;
}
public int characteristics() {
return Spliterator.DISTINCT;
}
}
}