0

0

Java集合之TreeMap的代码实例

黄舟

黄舟

发布时间:2017-03-13 14:37:08

|

2346人浏览过

|

来源于php中文网

原创

TreeMap与Map的关系如下图:



TreeMap介绍:

(1)TreeMap是一个有序的key-value集合,是通过红黑树来实现的。

(2)TreeMap是继承于AbstractMap,所以他是一个Map,是一个key-value集合。

(3)TreeMap实现了Navigable接口,支持一系列的导航方法,TreeMap是有序集合

(4)实现了Cloneable接口,可以被克隆

(5)TreeMap实现了Serializable接口,它支持序列化

(6)TreeMap基于红黑树数显,映射根据其键的自然排序进行排序


TreeMap主要的API:


Entry<>                ceilingEntry(K key)
K                          ceilingKey(K key)
clear()
Object                     clone()
Comparator      comparator()
containsKey(Object key)
NavigableSet<>            descendingKeySet()
NavigableMap<>         descendingMap()
Set<<>>           entrySet()
Entry<>                firstEntry()
K                          firstKey()
Entry<>                floorEntry(K key)
K                          floorKey(K key)
V                          get(Object key)
NavigableMap<>         headMap(K toinclusive)
SortedMap<>            headMap(K toExclusive)
Entry<>                higherEntry(K key)
K                          higherKey(K key)
isEmpty()
Set<>                     keySet()
Entry<>                lastEntry()
K                          lastKey()
Entry<>                lowerEntry(K key)
K                          lowerKey(K key)
NavigableSet<>            navigableKeySet()
Entry<>                pollFirstEntry()
Entry<>                pollLastEntry()
V                          put(K keyV value)
V                          remove(Object key)
size()
SortedMap<>            subMap(K fromInclusiveK toExclusive)
NavigableMap<>         subMap(K fromfromInclusiveK totoInclusive)
NavigableMap<>         tailMap(K frominclusive)
SortedMap<>            tailMap(K fromInclusive)

treemap遍历方式

(1)遍历TreeMap的键值对:根据entrySet()获取TreeMap的“键值对”集合,对键值对集合通过Iterator迭代遍历。

String key=Integer value=Iterator iterator=map.entrySet().iterator()(iterator.hasNext())
{
    Map.Entry entry=(Map.Entry)iterator.next()    key=(String) entry.getKey()    value=(Integer)entry.getValue()}


(2)遍历TreeMap的键:根据keySet()获得“键”集合,通过迭代器去遍历键集合。


String key = Integer integ = Iterator iter = map.keySet().iterator()(iter.hasNext()) {
   key = (String)iter.next()  integ = (Integer)map.get(key)}

(3)遍历TreeMap的值:根据values获得值的集合,通过迭代器去遍历值的集合。


Integer value = Collection c = map.values()Iterator iter= c.iterator()(iter.hasNext()) 
{
    value = (Integer)iter.next()}

TreeMap示例代码:

Snowy(SnowyAdmin)快速开发平台3.5.1
Snowy(SnowyAdmin)快速开发平台3.5.1

Snowy(SnowyAdmin)是国内首个国密前后端分离快速开发平台,集成国密加解密插件, 软件层面完全符合等保测评要求,同时实现国产化机型、中间件、数据库适配,是您的不二之选! 技术框架与密码结合,让更多的人认识密码,使用密码;更是让前后分离“密”不可分。采用SpringBoot+MybatisPlus+AntDesignVue+Vite 等更多组件及前沿技术开发,注释丰富,代码简洁,开箱即用

下载


public class Hello {
    
    public static void main(String[] args) {
        testTreeMapOridinaryAPIs();
        testSubMapAPIs();
    }
    private static void testTreeMapOridinaryAPIs() {
        // 初始化随机种子
        Random r = new Random();
        // 新建TreeMap
        TreeMap tmap = new TreeMap();
        // 添加操作
        tmap.put("one", r.nextInt(10));
        tmap.put("two", r.nextInt(10));
        tmap.put("three", r.nextInt(10));
        tmap.put("four", r.nextInt(10));
        tmap.put("five", r.nextInt(10));
        tmap.put("six", r.nextInt(10));
        System.out.printf("\n ---- testTreeMapOridinaryAPIs ----\n");
        // 打印出TreeMap
        System.out.printf("%s\n",tmap );
        // 通过Iterator遍历key-value
        Iterator iter = tmap.entrySet().iterator();
        while(iter.hasNext()) {
            Map.Entry entry = (Map.Entry)iter.next();
            System.out.printf("next : %s - %s\n", entry.getKey(), entry.getValue());
        }
        // TreeMap的键值对个数        
        System.out.printf("size: %s\n", tmap.size());
        // containsKey(Object key) :是否包含键key
        System.out.printf("contains key two : %s\n",tmap.containsKey("two"));
        System.out.printf("contains key five : %s\n",tmap.containsKey("five"));
        // containsValue(Object value) :是否包含值value
        System.out.printf("contains value 0 : %s\n",tmap.containsValue(new Integer(0)));
        // remove(Object key) : 删除键key对应的键值对
        tmap.remove("three");
        System.out.printf("tmap:%s\n",tmap );
        // clear() : 清空TreeMap
        tmap.clear();
        // isEmpty() : TreeMap是否为空
        System.out.printf("%s\n", (tmap.isEmpty()?"tmap is empty":"tmap is not empty") );
    }
    public static void testSubMapAPIs() {
        // 新建TreeMap
        TreeMap tmap = new TreeMap();
        // 添加“键值对”
        tmap.put("a", 101);
        tmap.put("b", 102);
        tmap.put("c", 103);
        tmap.put("d", 104);
        tmap.put("e", 105);
        System.out.printf("\n ---- testSubMapAPIs ----\n");
        // 打印出TreeMap
        System.out.printf("tmap:\n\t%s\n", tmap);
        // 测试 headMap(K toKey)
        System.out.printf("tmap.headMap(\"c\"):\n\t%s\n", tmap.headMap("c"));
        // 测试 headMap(K toKey, boolean inclusive) 
        System.out.printf("tmap.headMap(\"c\", true):\n\t%s\n", tmap.headMap("c", true));
        System.out.printf("tmap.headMap(\"c\", false):\n\t%s\n", tmap.headMap("c", false));
        // 测试 tailMap(K fromKey)
        System.out.printf("tmap.tailMap(\"c\"):\n\t%s\n", tmap.tailMap("c"));
        // 测试 tailMap(K fromKey, boolean inclusive)
        System.out.printf("tmap.tailMap(\"c\", true):\n\t%s\n", tmap.tailMap("c", true));
        System.out.printf("tmap.tailMap(\"c\", false):\n\t%s\n", tmap.tailMap("c", false));
        // 测试 subMap(K fromKey, K toKey)
        System.out.printf("tmap.subMap(\"a\", \"c\"):\n\t%s\n", tmap.subMap("a", "c"));
        // 测试 
        System.out.printf("tmap.subMap(\"a\", true, \"c\", true):\n\t%s\n",
                tmap.subMap("a", true, "c", true));
        System.out.printf("tmap.subMap(\"a\", true, \"c\", false):\n\t%s\n",
                tmap.subMap("a", true, "c", false));
        System.out.printf("tmap.subMap(\"a\", false, \"c\", true):\n\t%s\n",
                tmap.subMap("a", false, "c", true));
        System.out.printf("tmap.subMap(\"a\", false, \"c\", false):\n\t%s\n",
                tmap.subMap("a", false, "c", false));

        // 测试 navigableKeySet()
        System.out.printf("tmap.navigableKeySet():\n\t%s\n", tmap.navigableKeySet());
        // 测试 descendingKeySet()
        System.out.printf("tmap.descendingKeySet():\n\t%s\n", tmap.descendingKeySet());
    }
    public static void testNavigableMapAPIs() {
        // 新建TreeMap
        NavigableMap nav = new TreeMap();
        // 添加“键值对”
        nav.put("aaa", 111);
        nav.put("bbb", 222);
        nav.put("eee", 333);
        nav.put("ccc", 555);
        nav.put("ddd", 444);

        System.out.printf("\n ---- testNavigableMapAPIs ----\n");
        // 打印出TreeMap
        System.out.printf("Whole list:%s%n", nav);

        // 获取第一个key、第一个Entry
        System.out.printf("First key: %s\tFirst entry: %s%n",nav.firstKey(), nav.firstEntry());

        // 获取最后一个key、最后一个Entry
        System.out.printf("Last key: %s\tLast entry: %s%n",nav.lastKey(), nav.lastEntry());

        // 获取“小于/等于bbb”的最大键值对
        System.out.printf("Key floor before bbb: %s%n",nav.floorKey("bbb"));

        // 获取“小于bbb”的最大键值对
        System.out.printf("Key lower before bbb: %s%n", nav.lowerKey("bbb"));

        // 获取“大于/等于bbb”的最小键值对
        System.out.printf("Key ceiling after ccc: %s%n",nav.ceilingKey("ccc"));

        // 获取“大于bbb”的最小键值对
        System.out.printf("Key higher after ccc: %s%n\n",nav.higherKey("ccc"));
    }

}

运行结果:

---- testTreeMapOridinaryAPIs ----
{five=5, four=5, one=3, six=8, three=1, two=0}
next : five - 5
next : four - 5
next : one - 3
next : six - 8
next : three - 1
next : two - 0
size: 6
contains key two : true
contains key five : true
contains value 0 : true
tmap:{five=5, four=5, one=3, six=8, two=0}
tmap is empty
 ---- testSubMapAPIs ----
tmap:
 {a=101, b=102, c=103, d=104, e=105}
tmap.headMap("c"):
 {a=101, b=102}
tmap.headMap("c", true):
 {a=101, b=102, c=103}
tmap.headMap("c", false):
 {a=101, b=102}
tmap.tailMap("c"):
 {c=103, d=104, e=105}
tmap.tailMap("c", true):
 {c=103, d=104, e=105}
tmap.tailMap("c", false):
 {d=104, e=105}
tmap.subMap("a", "c"):
 {a=101, b=102}
tmap.subMap("a", true, "c", true):
 {a=101, b=102, c=103}
tmap.subMap("a", true, "c", false):
 {a=101, b=102}
tmap.subMap("a", false, "c", true):
 {b=102, c=103}
tmap.subMap("a", false, "c", false):
 {b=102}
tmap.navigableKeySet():
 [a, b, c, d, e]
tmap.descendingKeySet():
 [e, d, c, b, a]

基于Java8的SortedMap接口源代码:

public interface SortedMap extends Map {
    Comparator comparator();
    SortedMap subMap(K fromKey, K toKey);
    SortedMap headMap(K toKey);
    SortedMap tailMap(K fromKey);
    K firstKey();
    K lastKey();
    Set keySet();
    Collection values();
    Set> entrySet();
}

基于Java8的Navigable接口源代码:


public interface NavigableMap extends SortedMap {
    Map.Entry lowerEntry(K key);
    K lowerKey(K key);
    Map.Entry floorEntry(K key);
    K floorKey(K key);
    Map.Entry ceilingEntry(K key);
    K ceilingKey(K key);
    Map.Entry higherEntry(K key);
    K higherKey(K key);
    Map.Entry firstEntry();
    Map.Entry lastEntry();
    Map.Entry pollFirstEntry();
    Map.Entry pollLastEntry();
    NavigableMap descendingMap();
    NavigableSet navigableKeySet();
    NavigableSet descendingKeySet();
    NavigableMap subMap(K fromKey, boolean fromInclusive,
                             K toKey,   boolean toInclusive);
    NavigableMap headMap(K toKey, boolean inclusive);
    NavigableMap tailMap(K fromKey, boolean inclusive);
    SortedMap subMap(K fromKey, K toKey);
    SortedMap headMap(K toKey);
    SortedMap tailMap(K fromKey);
}

基于Java8的TreeMap源代码:


public class TreeMapextends AbstractMap
        implements NavigableMap, Cloneable, java.io.Serializable
{
    private final Comparator comparator;//比较器
    private transient Entry root;//根节点        
    private transient int size = 0;//起始个数
    private transient int modCount = 0;//tree改变次数
    public TreeMap() {
        comparator = null;
    }
    public TreeMap(Comparator comparator) {
        this.comparator = comparator;
    }
    public TreeMap(Map m) {
        comparator = null;
        putAll(m);
    }
    public TreeMap(SortedMap m) {
        comparator = m.comparator();
        try {
            buildFromSorted(m.size(), m.entrySet().iterator(), null, null);
        } catch (java.io.IOException cannotHappen) {
        } catch (ClassNotFoundException cannotHappen) {
        }
    }
    //获得个数
    public int size() {
        return size;
    }
    //是否含有某个key
    public boolean containsKey(Object key) {
        return getEntry(key) != null;
    }
    //是否还有某个值
    public boolean containsValue(Object value) {
        for (Entry e = getFirstEntry(); e != null; e = successor(e))
            if (valEquals(value, e.value))
                return true;
        return false;
    }
    //通过key获得值
    public V get(Object key) {
        Entry p = getEntry(key);
        return (p==null ? null : p.value);
    }
    //比较器
    public Comparator comparator() {
        return comparator;
    }
    //获得第一个key
    public K firstKey() {
        return key(getFirstEntry());
    }
    //获得最后一个key
    public K lastKey() {
        return key(getLastEntry());
    }

    /**
     * Copies all of the mappings from the specified map to this map.
     * These mappings replace any mappings that this map had for any
     * of the keys currently in the specified map.
     *
     * @param  map mappings to be stored in this map
     * @throws ClassCastException if the class of a key or value in
     *         the specified map prevents it from being stored in this map
     * @throws NullPointerException if the specified map is null or
     *         the specified map contains a null key and this map does not
     *         permit null keys
     */
    //拷贝某个特定的map到这个map
    public void putAll(Map map) {
        int mapSize = map.size();
        if (size==0 && mapSize!=0 && map instanceof SortedMap) {
            Comparator c = ((SortedMap)map).comparator();
            if (c == comparator || (c != null && c.equals(comparator))) {
                ++modCount;
                try {
                    buildFromSorted(mapSize, map.entrySet().iterator(),
                            null, null);
                } catch (java.io.IOException cannotHappen) {
                } catch (ClassNotFoundException cannotHappen) {
                }
                return;
            }
        }
        super.putAll(map);
    }

    /**
     * Returns this map's entry for the given key, or {@code null} if the map
     * does not contain an entry for the key.
     *
     * @return this map's entry for the given key, or {@code null} if the map
     *         does not contain an entry for the key
     * @throws ClassCastException if the specified key cannot be compared
     *         with the keys currently in the map
     * @throws NullPointerException if the specified key is null
     *         and this map uses natural ordering, or its comparator
     *         does not permit null keys
     */
    //根据某个key获得entry
    final Entry getEntry(Object key) {
        // Offload comparator-based version for sake of performance
        if (comparator != null)
            return getEntryUsingComparator(key);
        if (key == null)
            throw new NullPointerException();
        @SuppressWarnings("unchecked")
        Comparable k = (Comparable) key;
        Entry p = root;
        while (p != null) {
            int cmp = k.compareTo(p.key);
            if (cmp < 0)
                p = p.left;
            else if (cmp > 0)
                p = p.right;
            else
                return p;
        }
        return null;
    }

    /**
     * Version of getEntry using comparator. Split off from getEntry
     * for performance. (This is not worth doing for most methods,
     * that are less dependent on comparator performance, but is
     * worthwhile here.)
     */
    //通过比较器来比较key,返回entry
    final Entry getEntryUsingComparator(Object key) {
        @SuppressWarnings("unchecked")
        K k = (K) key;
        Comparator cpr = comparator;
        if (cpr != null) {
            Entry p = root;
            while (p != null) {
                int cmp = cpr.compare(k, p.key);
                if (cmp < 0)
                    p = p.left;
                else if (cmp > 0)
                    p = p.right;
                else
                    return p;
            }
        }
        return null;
    }

    /**
     * Gets the entry corresponding to the specified key; if no such entry
     * exists, returns the entry for the least key greater than the specified
     * key; if no such entry exists (i.e., the greatest key in the Tree is less
     * than the specified key), returns {@code null}.
     */
    //获得与key关系最近的entry,上限
    final Entry getCeilingEntry(K key) {
        Entry p = root;
        while (p != null) {
            int cmp = compare(key, p.key);
            if (cmp < 0) {
                if (p.left != null)
                    p = p.left;
                else
                    return p;
            } else if (cmp > 0) {
                if (p.right != null) {
                    p = p.right;
                } else {
                    Entry parent = p.parent;
                    Entry ch = p;
                    while (parent != null && ch == parent.right) {
                        ch = parent;
                        parent = parent.parent;
                    }
                    return parent;
                }
            } else
                return p;
        }
        return null;
    }

    /**
     * Gets the entry corresponding to the specified key; if no such entry
     * exists, returns the entry for the greatest key less than the specified
     * key; if no such entry exists, returns {@code null}.
     */
    //获得与key关系最近的entry,下限
    final Entry getFloorEntry(K key) {
        Entry p = root;
        while (p != null) {
            int cmp = compare(key, p.key);
            if (cmp > 0) {
                if (p.right != null)
                    p = p.right;
                else
                    return p;
            } else if (cmp < 0) {
                if (p.left != null) {
                    p = p.left;
                } else {
                    Entry parent = p.parent;
                    Entry ch = p;
                    while (parent != null && ch == parent.left) {
                        ch = parent;
                        parent = parent.parent;
                    }
                    return parent;
                }
            } else
                return p;

        }
        return null;
    }

    /**
     * Gets the entry for the least key greater than the specified
     * key; if no such entry exists, returns the entry for the least
     * key greater than the specified key; if no such entry exists
     * returns {@code null}.
     */
    //比某个key大的entry
    final Entry getHigherEntry(K key) {
        Entry p = root;
        while (p != null) {
            int cmp = compare(key, p.key);
            if (cmp < 0) {
                if (p.left != null)
                    p = p.left;
                else
                    return p;
            } else {
                if (p.right != null) {
                    p = p.right;
                } else {
                    Entry parent = p.parent;
                    Entry ch = p;
                    while (parent != null && ch == parent.right) {
                        ch = parent;
                        parent = parent.parent;
                    }
                    return parent;
                }
            }
        }
        return null;
    }

    /**
     * Returns the entry for the greatest key less than the specified key; if
     * no such entry exists (i.e., the least key in the Tree is greater than
     * the specified key), returns {@code null}.
     */
//获得某个key小于最接近的entry
    final Entry getLowerEntry(K key) {
        Entry p = root;
        while (p != null) {
            int cmp = compare(key, p.key);
            if (cmp > 0) {
                if (p.right != null)
                    p = p.right;
                else
                    return p;
            } else {
                if (p.left != null) {
                    p = p.left;
                } else {
                    Entry parent = p.parent;
                    Entry ch = p;
                    while (parent != null && ch == parent.left) {
                        ch = parent;
                        parent = parent.parent;
                    }
                    return parent;
                }
            }
        }
        return null;
    }

    /**
     * Associates the specified value with the specified key in this map.
     * If the map previously contained a mapping for the key, the old
     * value is replaced.
     *
     * @param key key with which the specified value is to be associated
     * @param value value to be associated with the specified key
     *
     * @return the previous value associated with {@code key}, or
     *         {@code null} if there was no mapping for {@code key}.
     *         (A {@code null} return can also indicate that the map
     *         previously associated {@code null} with {@code key}.)
     * @throws ClassCastException if the specified key cannot be compared
     *         with the keys currently in the map
     * @throws NullPointerException if the specified key is null
     *         and this map uses natural ordering, or its comparator
     *         does not permit null keys
     */
//插入key-value值
    public V put(K key, V value) {
        Entry t = root;
        if (t == null) {
            compare(key, key); // type (and possibly null) check

            root = new Entry<>(key, value, null);
            size = 1;
            modCount++;
            return null;
        }
        int cmp;
        Entry parent;
// split comparator and comparable paths
        Comparator cpr = comparator;
        if (cpr != null) {
            do {
                parent = t;
                cmp = cpr.compare(key, t.key);
                if (cmp < 0)
                    t = t.left;
                else if (cmp > 0)
                    t = t.right;
                else
                    return t.setValue(value);
            } while (t != null);
        }
        else {
            if (key == null)
                throw new NullPointerException();
            @SuppressWarnings("unchecked")
            Comparable k = (Comparable) key;
            do {
                parent = t;
                cmp = k.compareTo(t.key);
                if (cmp < 0)
                    t = t.left;
                else if (cmp > 0)
                    t = t.right;
                else
                    return t.setValue(value);
            } while (t != null);
        }
        Entry e = new Entry<>(key, value, parent);
        if (cmp < 0)
            parent.left = e;
        else
            parent.right = e;
        fixAfterInsertion(e);
        size++;
        modCount++;
        return null;
    }

    /**
     * Removes the mapping for this key from this TreeMap if present.
     *
     * @param  key key for which mapping should be removed
     * @return the previous value associated with {@code key}, or
     *         {@code null} if there was no mapping for {@code key}.
     *         (A {@code null} return can also indicate that the map
     *         previously associated {@code null} with {@code key}.)
     * @throws ClassCastException if the specified key cannot be compared
     *         with the keys currently in the map
     * @throws NullPointerException if the specified key is null
     *         and this map uses natural ordering, or its comparator
     *         does not permit null keys
     */
//删掉某个key,并返回value
    public V remove(Object key) {
        Entry p = getEntry(key);
        if (p == null)
            return null;

        V oldValue = p.value;
        deleteEntry(p);
        return oldValue;
    }

    /**
     * Removes all of the mappings from this map.
     * The map will be empty after this call returns.
     */
//清空
    public void clear() {
        modCount++;
        size = 0;
        root = null;
    }

    /**
     * Returns a shallow copy of this {@code TreeMap} instance. (The keys and
     * values themselves are not cloned.)
     *
     * @return a shallow copy of this map
     */
//进行克隆,深拷贝
    public Object clone() {
        TreeMap clone;
        try {
            clone = (TreeMap) super.clone();
        } catch (CloneNotSupportedException e) {
            throw new InternalError(e);
        }

// Put clone into "virgin" state (except for comparator)
        clone.root = null;
        clone.size = 0;
        clone.modCount = 0;
        clone.entrySet = null;
        clone.navigableKeySet = null;
        clone.descendingMap = null;

// Initialize clone with our mappings
        try {
            clone.buildFromSorted(size, entrySet().iterator(), null, null);
        } catch (java.io.IOException cannotHappen) {
        } catch (ClassNotFoundException cannotHappen) {
        }

        return clone;
    }

// NavigableMap API methods

    /**
     * @since 1.6
     */
//获得第一个entry
    public Map.Entry firstEntry() {
        return exportEntry(getFirstEntry());
    }

    /**
     * @since 1.6
     */
//最后一个entry
    public Map.Entry lastEntry() {
        return exportEntry(getLastEntry());
    }

    /**
     * @since 1.6
     */
//弹出第一个entry,并删除
    public Map.Entry pollFirstEntry() {
        Entry p = getFirstEntry();
        Map.Entry result = exportEntry(p);
        if (p != null)
            deleteEntry(p);
        return result;
    }

    /**
     * @since 1.6
     */
//弹出最后一个entry,并删除
    public Map.Entry pollLastEntry() {
        Entry p = getLastEntry();
        Map.Entry result = exportEntry(p);
        if (p != null)
            deleteEntry(p);
        return result;
    }

    /**
     * @throws ClassCastException {@inheritDoc}
     * @throws NullPointerException if the specified key is null
     *         and this map uses natural ordering, or its comparator
     *         does not permit null keys
     * @since 1.6
     */
    public Map.Entry lowerEntry(K key) {
        return exportEntry(getLowerEntry(key));
    }

    /**
     * @throws ClassCastException {@inheritDoc}
     * @throws NullPointerException if the specified key is null
     *         and this map uses natural ordering, or its comparator
     *         does not permit null keys
     * @since 1.6
     */
    public K lowerKey(K key) {
        return keyOrNull(getLowerEntry(key));
    }

    /**
     * @throws ClassCastException {@inheritDoc}
     * @throws NullPointerException if the specified key is null
     *         and this map uses natural ordering, or its comparator
     *         does not permit null keys
     * @since 1.6
     */
    public Map.Entry floorEntry(K key) {
        return exportEntry(getFloorEntry(key));
    }

    /**
     * @throws ClassCastException {@inheritDoc}
     * @throws NullPointerException if the specified key is null
     *         and this map uses natural ordering, or its comparator
     *         does not permit null keys
     * @since 1.6
     */
    public K floorKey(K key) {
        return keyOrNull(getFloorEntry(key));
    }

    /**
     * @throws ClassCastException {@inheritDoc}
     * @throws NullPointerException if the specified key is null
     *         and this map uses natural ordering, or its comparator
     *         does not permit null keys
     * @since 1.6
     */
    public Map.Entry ceilingEntry(K key) {
        return exportEntry(getCeilingEntry(key));
    }

    /**
     * @throws ClassCastException {@inheritDoc}
     * @throws NullPointerException if the specified key is null
     *         and this map uses natural ordering, or its comparator
     *         does not permit null keys
     * @since 1.6
     */
    public K ceilingKey(K key) {
        return keyOrNull(getCeilingEntry(key));
    }

    /**
     * @throws ClassCastException {@inheritDoc}
     * @throws NullPointerException if the specified key is null
     *         and this map uses natural ordering, or its comparator
     *         does not permit null keys
     * @since 1.6
     */
    public Map.Entry higherEntry(K key) {
        return exportEntry(getHigherEntry(key));
    }

    /**
     * @throws ClassCastException {@inheritDoc}
     * @throws NullPointerException if the specified key is null
     *         and this map uses natural ordering, or its comparator
     *         does not permit null keys
     * @since 1.6
     */
    public K higherKey(K key) {
        return keyOrNull(getHigherEntry(key));
    }

// Views

    /**
     * Fields initialized to contain an instance of the entry set view
     * the first time this view is requested.  Views are stateless, so
     * there's no reason to create more than one.
     */
    private transient EntrySet entrySet;
    private transient KeySet navigableKeySet;
    private transient NavigableMap descendingMap;

    /**
     * Returns a {@link Set} view of the keys contained in this map.
     *
     * 

The set's iterator returns the keys in ascending order. * The set's spliterator is * late-binding, * fail-fast, and additionally reports {@link Spliterator#SORTED} * and {@link Spliterator#ORDERED} with an encounter order that is ascending * key order. The spliterator's comparator (see * {@link java.util.Spliterator#getComparator()}) is {@code null} if * the tree map's comparator (see {@link #comparator()}) is {@code null}. * Otherwise, the spliterator's comparator is the same as or imposes the * same total ordering as the tree map's comparator. * *

The set is backed by the map, so changes to the map are * reflected in the set, and vice-versa. If the map is modified * while an iteration over the set is in progress (except through * the iterator's own {@code remove} operation), the results of * the iteration are undefined. The set supports element removal, * which removes the corresponding mapping from the map, via the * {@code Iterator.remove}, {@code Set.remove}, * {@code removeAll}, {@code retainAll}, and {@code clear} * operations. It does not support the {@code add} or {@code addAll} * operations. */ public Set keySet() { return navigableKeySet(); } /** * @since 1.6 */ public NavigableSet navigableKeySet() { KeySet nks = navigableKeySet; return (nks != null) ? nks : (navigableKeySet = new KeySet<>(this)); } /** * @since 1.6 */ public NavigableSet descendingKeySet() { return descendingMap().navigableKeySet(); } /** * Returns a {@link Collection} view of the values contained in this map. * *

The collection's iterator returns the values in ascending order * of the corresponding keys. The collection's spliterator is * late-binding, * fail-fast, and additionally reports {@link Spliterator#ORDERED} * with an encounter order that is ascending order of the corresponding * keys. * *

The collection is backed by the map, so changes to the map are * reflected in the collection, and vice-versa. If the map is * modified while an iteration over the collection is in progress * (except through the iterator's own {@code remove} operation), * the results of the iteration are undefined. The collection * supports element removal, which removes the corresponding * mapping from the map, via the {@code Iterator.remove}, * {@code Collection.remove}, {@code removeAll}, * {@code retainAll} and {@code clear} operations. It does not * support the {@code add} or {@code addAll} operations. */ public Collection values() { Collection vs = values; return (vs != null) ? vs : (values = new Values()); } /** * Returns a {@link Set} view of the mappings contained in this map. * *

The set's iterator returns the entries in ascending key order. The * sets's spliterator is * late-binding, * fail-fast, and additionally reports {@link Spliterator#SORTED} and * {@link Spliterator#ORDERED} with an encounter order that is ascending key * order. * *

The set is backed by the map, so changes to the map are * reflected in the set, and vice-versa. If the map is modified * while an iteration over the set is in progress (except through * the iterator's own {@code remove} operation, or through the * {@code setValue} operation on a map entry returned by the * iterator) the results of the iteration are undefined. The set * supports element removal, which removes the corresponding * mapping from the map, via the {@code Iterator.remove}, * {@code Set.remove}, {@code removeAll}, {@code retainAll} and * {@code clear} operations. It does not support the * {@code add} or {@code addAll} operations. */ public Set> entrySet() { EntrySet es = entrySet; return (es != null) ? es : (entrySet = new EntrySet()); } /** * @since 1.6 */ public NavigableMap descendingMap() { NavigableMap km = descendingMap; return (km != null) ? km : (descendingMap = new DescendingSubMap<>(this, true, null, true, true, null, true)); } /** * @throws ClassCastException {@inheritDoc} * @throws NullPointerException if {@code fromKey} or {@code toKey} is * null and this map uses natural ordering, or its comparator * does not permit null keys * @throws IllegalArgumentException {@inheritDoc} * @since 1.6 */ public NavigableMap subMap(K fromKey, boolean fromInclusive, K toKey, boolean toInclusive) { return new AscendingSubMap<>(this, false, fromKey, fromInclusive, false, toKey, toInclusive); } /** * @throws ClassCastException {@inheritDoc} * @throws NullPointerException if {@code toKey} is null * and this map uses natural ordering, or its comparator * does not permit null keys * @throws IllegalArgumentException {@inheritDoc} * @since 1.6 */ public NavigableMap headMap(K toKey, boolean inclusive) { return new AscendingSubMap<>(this, true, null, true, false, toKey, inclusive); } /** * @throws ClassCastException {@inheritDoc} * @throws NullPointerException if {@code fromKey} is null * and this map uses natural ordering, or its comparator * does not permit null keys * @throws IllegalArgumentException {@inheritDoc} * @since 1.6 */ public NavigableMap tailMap(K fromKey, boolean inclusive) { return new AscendingSubMap<>(this, false, fromKey, inclusive, true, null, true); } /** * @throws ClassCastException {@inheritDoc} * @throws NullPointerException if {@code fromKey} or {@code toKey} is * null and this map uses natural ordering, or its comparator * does not permit null keys * @throws IllegalArgumentException {@inheritDoc} */ public SortedMap subMap(K fromKey, K toKey) { return subMap(fromKey, true, toKey, false); } /** * @throws ClassCastException {@inheritDoc} * @throws NullPointerException if {@code toKey} is null * and this map uses natural ordering, or its comparator * does not permit null keys * @throws IllegalArgumentException {@inheritDoc} */ public SortedMap headMap(K toKey) { return headMap(toKey, false); } /** * @throws ClassCastException {@inheritDoc} * @throws NullPointerException if {@code fromKey} is null * and this map uses natural ordering, or its comparator * does not permit null keys * @throws IllegalArgumentException {@inheritDoc} */ public SortedMap tailMap(K fromKey) { return tailMap(fromKey, true); } @Override public boolean replace(K key, V oldValue, V newValue) { Entry p = getEntry(key); if (p!=null && Objects.equals(oldValue, p.value)) { p.value = newValue; return true; } return false; } @Override public V replace(K key, V value) { Entry p = getEntry(key); if (p!=null) { V oldValue = p.value; p.value = value; return oldValue; } return null; } @Override public void forEach(BiConsumer action) { Objects.requireNonNull(action); int expectedModCount = modCount; for (Entry e = getFirstEntry(); e != null; e = successor(e)) { action.accept(e.key, e.value); if (expectedModCount != modCount) { throw new ConcurrentModificationException(); } } } @Override public void replaceAll(BiFunction function) { Objects.requireNonNull(function); int expectedModCount = modCount; for (Entry e = getFirstEntry(); e != null; e = successor(e)) { e.value = function.apply(e.key, e.value); if (expectedModCount != modCount) { throw new ConcurrentModificationException(); } } } // View class support class Values extends AbstractCollection { public Iterator iterator() { return new ValueIterator(getFirstEntry()); } public int size() { return TreeMap.this.size(); } public boolean contains(Object o) { return TreeMap.this.containsValue(o); } public boolean remove(Object o) { for (Entry e = getFirstEntry(); e != null; e = successor(e)) { if (valEquals(e.getValue(), o)) { deleteEntry(e); return true; } } return false; } public void clear() { TreeMap.this.clear(); } public Spliterator spliterator() { return new ValueSpliterator(TreeMap.this, null, null, 0, -1, 0); } } class EntrySet extends AbstractSet> { public Iterator> iterator() { return new EntryIterator(getFirstEntry()); } public boolean contains(Object o) { if (!(o instanceof Map.Entry)) return false; Map.Entry entry = (Map.Entry) o; Object value = entry.getValue(); Entry p = getEntry(entry.getKey()); return p != null && valEquals(p.getValue(), value); } public boolean remove(Object o) { if (!(o instanceof Map.Entry)) return false; Map.Entry entry = (Map.Entry) o; Object value = entry.getValue(); Entry p = getEntry(entry.getKey()); if (p != null && valEquals(p.getValue(), value)) { deleteEntry(p); return true; } return false; } public int size() { return TreeMap.this.size(); } public void clear() { TreeMap.this.clear(); } public Spliterator> spliterator() { return new EntrySpliterator(TreeMap.this, null, null, 0, -1, 0); } } /* * Unlike Values and EntrySet, the KeySet class is static, * delegating to a NavigableMap to allow use by SubMaps, which * outweighs the ugliness of needing type-tests for the following * Iterator methods that are defined appropriately in main versus * submap classes. */ Iterator keyIterator() { return new KeyIterator(getFirstEntry()); } Iterator descendingKeyIterator() { return new DescendingKeyIterator(getLastEntry()); } static final class KeySet extends AbstractSet implements NavigableSet { private final NavigableMap m; KeySet(NavigableMap map) { m = map; } public Iterator iterator() { if (m instanceof TreeMap) return ((TreeMap)m).keyIterator(); else return ((TreeMap.NavigableSubMap)m).keyIterator(); } public Iterator descendingIterator() { if (m instanceof TreeMap) return ((TreeMap)m).descendingKeyIterator(); else return ((TreeMap.NavigableSubMap)m).descendingKeyIterator(); } public int size() { return m.size(); } public boolean isEmpty() { return m.isEmpty(); } public boolean contains(Object o) { return m.containsKey(o); } public void clear() { m.clear(); } public E lower(E e) { return m.lowerKey(e); } public E floor(E e) { return m.floorKey(e); } public E ceiling(E e) { return m.ceilingKey(e); } public E higher(E e) { return m.higherKey(e); } public E first() { return m.firstKey(); } public E last() { return m.lastKey(); } public Comparator comparator() { return m.comparator(); } public E pollFirst() { Map.Entry e = m.pollFirstEntry(); return (e == null) ? null : e.getKey(); } public E pollLast() { Map.Entry e = m.pollLastEntry(); return (e == null) ? null : e.getKey(); } public boolean remove(Object o) { int oldSize = size(); m.remove(o); return size() != oldSize; } public NavigableSet subSet(E fromElement, boolean fromInclusive, E toElement, boolean toInclusive) { return new KeySet<>(m.subMap(fromElement, fromInclusive, toElement, toInclusive)); } public NavigableSet headSet(E toElement, boolean inclusive) { return new KeySet<>(m.headMap(toElement, inclusive)); } public NavigableSet tailSet(E fromElement, boolean inclusive) { return new KeySet<>(m.tailMap(fromElement, inclusive)); } public SortedSet subSet(E fromElement, E toElement) { return subSet(fromElement, true, toElement, false); } public SortedSet headSet(E toElement) { return headSet(toElement, false); } public SortedSet tailSet(E fromElement) { return tailSet(fromElement, true); } public NavigableSet descendingSet() { return new KeySet<>(m.descendingMap()); } public Spliterator spliterator() { return keySpliteratorFor(m); } } /** * Base class for TreeMap Iterators */ abstract class PrivateEntryIterator implements Iterator { Entry next; Entry lastReturned; int expectedModCount; PrivateEntryIterator(Entry first) { expectedModCount = modCount; lastReturned = null; next = first; } public final boolean hasNext() { return next != null; } final Entry nextEntry() { Entry e = next; if (e == null) throw new NoSuchElementException(); if (modCount != expectedModCount) throw new ConcurrentModificationException(); next = successor(e); lastReturned = e; return e; } final Entry prevEntry() { Entry e = next; if (e == null) throw new NoSuchElementException(); if (modCount != expectedModCount) throw new ConcurrentModificationException(); next = predecessor(e); lastReturned = e; return e; } public void remove() { if (lastReturned == null) throw new IllegalStateException(); if (modCount != expectedModCount) throw new ConcurrentModificationException(); // deleted entries are replaced by their successors if (lastReturned.left != null && lastReturned.right != null) next = lastReturned; deleteEntry(lastReturned); expectedModCount = modCount; lastReturned = null; } } final class EntryIterator extends PrivateEntryIterator> { EntryIterator(Entry first) { super(first); } public Map.Entry next() { return nextEntry(); } } final class ValueIterator extends PrivateEntryIterator { ValueIterator(Entry first) { super(first); } public V next() { return nextEntry().value; } } final class KeyIterator extends PrivateEntryIterator { KeyIterator(Entry first) { super(first); } public K next() { return nextEntry().key; } } final class DescendingKeyIterator extends PrivateEntryIterator { DescendingKeyIterator(Entry first) { super(first); } public K next() { return prevEntry().key; } public void remove() { if (lastReturned == null) throw new IllegalStateException(); if (modCount != expectedModCount) throw new ConcurrentModificationException(); deleteEntry(lastReturned); lastReturned = null; expectedModCount = modCount; } } // Little utilities /** * Compares two keys using the correct comparison method for this TreeMap. */ @SuppressWarnings("unchecked") final int compare(Object k1, Object k2) { return comparator==null ? ((Comparable)k1).compareTo((K)k2) : comparator.compare((K)k1, (K)k2); } /** * Test two values for equality. Differs from o1.equals(o2) only in * that it copes with {@code null} o1 properly. */ static final boolean valEquals(Object o1, Object o2) { return (o1==null ? o2==null : o1.equals(o2)); } /** * Return SimpleImmutableEntry for entry, or null if null */ static Map.Entry exportEntry(TreeMap.Entry e) { return (e == null) ? null : new AbstractMap.SimpleImmutableEntry<>(e); } /** * Return key for entry, or null if null */ static K keyOrNull(TreeMap.Entry e) { return (e == null) ? null : e.key; } /** * Returns the key corresponding to the specified Entry. * @throws NoSuchElementException if the Entry is null */ static K key(Entry e) { if (e==null) throw new NoSuchElementException(); return e.key; } // SubMaps /** * Dummy value serving as unmatchable fence key for unbounded * SubMapIterators */ private static final Object UNBOUNDED = new Object(); /** * @serial include */ abstract static class NavigableSubMap extends AbstractMap implements NavigableMap, java.io.Serializable { private static final long serialVersionUID = -2102997345730753016L; /** * The backing map. */ final TreeMap m; /** * Endpoints are represented as triples (fromStart, lo, * loInclusive) and (toEnd, hi, hiInclusive). If fromStart is * true, then the low (absolute) bound is the start of the * backing map, and the other values are ignored. Otherwise, * if loInclusive is true, lo is the inclusive bound, else lo * is the exclusive bound. Similarly for the upper bound. */ final K lo, hi; final boolean fromStart, toEnd; final boolean loInclusive, hiInclusive; NavigableSubMap(TreeMap m, boolean fromStart, K lo, boolean loInclusive, boolean toEnd, K hi, boolean hiInclusive) { if (!fromStart && !toEnd) { if (m.compare(lo, hi) > 0) throw new IllegalArgumentException("fromKey > toKey"); } else { if (!fromStart) // type check m.compare(lo, lo); if (!toEnd) m.compare(hi, hi); } this.m = m; this.fromStart = fromStart; this.lo = lo; this.loInclusive = loInclusive; this.toEnd = toEnd; this.hi = hi; this.hiInclusive = hiInclusive; } // internal utilities final boolean tooLow(Object key) { if (!fromStart) { int c = m.compare(key, lo); if (c < 0 || (c == 0 && !loInclusive)) return true; } return false; } final boolean tooHigh(Object key) { if (!toEnd) { int c = m.compare(key, hi); if (c > 0 || (c == 0 && !hiInclusive)) return true; } return false; } final boolean inRange(Object key) { return !tooLow(key) && !tooHigh(key); } final boolean inClosedRange(Object key) { return (fromStart || m.compare(key, lo) >= 0) && (toEnd || m.compare(hi, key) >= 0); } final boolean inRange(Object key, boolean inclusive) { return inclusive ? inRange(key) : inClosedRange(key); } /* * Absolute versions of relation operations. * Subclasses map to these using like-named "sub" * versions that invert senses for descending maps */ final TreeMap.Entry absLowest() { TreeMap.Entry e = (fromStart ? m.getFirstEntry() : (loInclusive ? m.getCeilingEntry(lo) : m.getHigherEntry(lo))); return (e == null || tooHigh(e.key)) ? null : e; } final TreeMap.Entry absHighest() { TreeMap.Entry e = (toEnd ? m.getLastEntry() : (hiInclusive ? m.getFloorEntry(hi) : m.getLowerEntry(hi))); return (e == null || tooLow(e.key)) ? null : e; } final TreeMap.Entry absCeiling(K key) { if (tooLow(key)) return absLowest(); TreeMap.Entry e = m.getCeilingEntry(key); return (e == null || tooHigh(e.key)) ? null : e; } final TreeMap.Entry absHigher(K key) { if (tooLow(key)) return absLowest(); TreeMap.Entry e = m.getHigherEntry(key); return (e == null || tooHigh(e.key)) ? null : e; } final TreeMap.Entry absFloor(K key) { if (tooHigh(key)) return absHighest(); TreeMap.Entry e = m.getFloorEntry(key); return (e == null || tooLow(e.key)) ? null : e; } final TreeMap.Entry absLower(K key) { if (tooHigh(key)) return absHighest(); TreeMap.Entry e = m.getLowerEntry(key); return (e == null || tooLow(e.key)) ? null : e; } /** Returns the absolute high fence for ascending traversal */ final TreeMap.Entry absHighFence() { return (toEnd ? null : (hiInclusive ? m.getHigherEntry(hi) : m.getCeilingEntry(hi))); } /** Return the absolute low fence for descending traversal */ final TreeMap.Entry absLowFence() { return (fromStart ? null : (loInclusive ? m.getLowerEntry(lo) : m.getFloorEntry(lo))); } // Abstract methods defined in ascending vs descending classes // These relay to the appropriate absolute versions abstract TreeMap.Entry subLowest(); abstract TreeMap.Entry subHighest(); abstract TreeMap.Entry subCeiling(K key); abstract TreeMap.Entry subHigher(K key); abstract TreeMap.Entry subFloor(K key); abstract TreeMap.Entry subLower(K key); /** Returns ascending iterator from the perspective of this submap */ abstract Iterator keyIterator(); abstract Spliterator keySpliterator(); /** Returns descending iterator from the perspective of this submap */ abstract Iterator descendingKeyIterator(); // public methods public boolean isEmpty() { return (fromStart && toEnd) ? m.isEmpty() : entrySet().isEmpty(); } public int size() { return (fromStart && toEnd) ? m.size() : entrySet().size(); } public final boolean containsKey(Object key) { return inRange(key) && m.containsKey(key); } public final V put(K key, V value) { if (!inRange(key)) throw new IllegalArgumentException("key out of range"); return m.put(key, value); } public final V get(Object key) { return !inRange(key) ? null : m.get(key); } public final V remove(Object key) { return !inRange(key) ? null : m.remove(key); } public final Map.Entry ceilingEntry(K key) { return exportEntry(subCeiling(key)); } public final K ceilingKey(K key) { return keyOrNull(subCeiling(key)); } public final Map.Entry higherEntry(K key) { return exportEntry(subHigher(key)); } public final K higherKey(K key) { return keyOrNull(subHigher(key)); } public final Map.Entry floorEntry(K key) { return exportEntry(subFloor(key)); } public final K floorKey(K key) { return keyOrNull(subFloor(key)); } public final Map.Entry lowerEntry(K key) { return exportEntry(subLower(key)); } public final K lowerKey(K key) { return keyOrNull(subLower(key)); } public final K firstKey() { return key(subLowest()); } public final K lastKey() { return key(subHighest()); } public final Map.Entry firstEntry() { return exportEntry(subLowest()); } public final Map.Entry lastEntry() { return exportEntry(subHighest()); } public final Map.Entry pollFirstEntry() { TreeMap.Entry e = subLowest(); Map.Entry result = exportEntry(e); if (e != null) m.deleteEntry(e); return result; } public final Map.Entry pollLastEntry() { TreeMap.Entry e = subHighest(); Map.Entry result = exportEntry(e); if (e != null) m.deleteEntry(e); return result; } // Views transient NavigableMap descendingMapView; transient EntrySetView entrySetView; transient KeySet navigableKeySetView; public final NavigableSet navigableKeySet() { KeySet nksv = navigableKeySetView; return (nksv != null) ? nksv : (navigableKeySetView = new TreeMap.KeySet<>(this)); } public final Set keySet() { return navigableKeySet(); } public NavigableSet descendingKeySet() { return descendingMap().navigableKeySet(); } public final SortedMap subMap(K fromKey, K toKey) { return subMap(fromKey, true, toKey, false); } public final SortedMap headMap(K toKey) { return headMap(toKey, false); } public final SortedMap tailMap(K fromKey) { return tailMap(fromKey, true); } // View classes abstract class EntrySetView extends AbstractSet> { private transient int size = -1, sizeModCount; public int size() { if (fromStart && toEnd) return m.size(); if (size == -1 || sizeModCount != m.modCount) { sizeModCount = m.modCount; size = 0; Iterator i = iterator(); while (i.hasNext()) { size++; i.next(); } } return size; } public boolean isEmpty() { TreeMap.Entry n = absLowest(); return n == null || tooHigh(n.key); } public boolean contains(Object o) { if (!(o instanceof Map.Entry)) return false; Map.Entry entry = (Map.Entry) o; Object key = entry.getKey(); if (!inRange(key)) return false; TreeMap.Entry node = m.getEntry(key); return node != null && valEquals(node.getValue(), entry.getValue()); } public boolean remove(Object o) { if (!(o instanceof Map.Entry)) return false; Map.Entry entry = (Map.Entry) o; Object key = entry.getKey(); if (!inRange(key)) return false; TreeMap.Entry node = m.getEntry(key); if (node!=null && valEquals(node.getValue(), entry.getValue())) { m.deleteEntry(node); return true; } return false; } } /** * Iterators for SubMaps */ abstract class SubMapIterator implements Iterator { TreeMap.Entry lastReturned; TreeMap.Entry next; final Object fenceKey; int expectedModCount; SubMapIterator(TreeMap.Entry first, TreeMap.Entry fence) { expectedModCount = m.modCount; lastReturned = null; next = first; fenceKey = fence == null ? UNBOUNDED : fence.key; } public final boolean hasNext() { return next != null && next.key != fenceKey; } final TreeMap.Entry nextEntry() { TreeMap.Entry e = next; if (e == null || e.key == fenceKey) throw new NoSuchElementException(); if (m.modCount != expectedModCount) throw new ConcurrentModificationException(); next = successor(e); lastReturned = e; return e; } final TreeMap.Entry prevEntry() { TreeMap.Entry e = next; if (e == null || e.key == fenceKey) throw new NoSuchElementException(); if (m.modCount != expectedModCount) throw new ConcurrentModificationException(); next = predecessor(e); lastReturned = e; return e; } final void removeAscending() { if (lastReturned == null) throw new IllegalStateException(); if (m.modCount != expectedModCount) throw new ConcurrentModificationException(); // deleted entries are replaced by their successors if (lastReturned.left != null && lastReturned.right != null) next = lastReturned; m.deleteEntry(lastReturned); lastReturned = null; expectedModCount = m.modCount; } final void removeDescending() { if (lastReturned == null) throw new IllegalStateException(); if (m.modCount != expectedModCount) throw new ConcurrentModificationException(); m.deleteEntry(lastReturned); lastReturned = null; expectedModCount = m.modCount; } } final class SubMapEntryIterator extends SubMapIterator> { SubMapEntryIterator(TreeMap.Entry first, TreeMap.Entry fence) { super(first, fence); } public Map.Entry next() { return nextEntry(); } public void remove() { removeAscending(); } } final class DescendingSubMapEntryIterator extends SubMapIterator> { DescendingSubMapEntryIterator(TreeMap.Entry last, TreeMap.Entry fence) { super(last, fence); } public Map.Entry next() { return prevEntry(); } public void remove() { removeDescending(); } } // Implement minimal Spliterator as KeySpliterator backup final class SubMapKeyIterator extends SubMapIterator implements Spliterator { SubMapKeyIterator(TreeMap.Entry first, TreeMap.Entry fence) { super(first, fence); } public K next() { return nextEntry().key; } public void remove() { removeAscending(); } public Spliterator trySplit() { return null; } public void forEachRemaining(Consumer action) { while (hasNext()) action.accept(next()); } public boolean tryAdvance(Consumer action) { if (hasNext()) { action.accept(next()); return true; } return false; } public long estimateSize() { return Long.MAX_VALUE; } public int characteristics() { return Spliterator.DISTINCT | Spliterator.ORDERED | Spliterator.SORTED; } public final Comparator getComparator() { return NavigableSubMap.this.comparator(); } } final class DescendingSubMapKeyIterator extends SubMapIterator implements Spliterator { DescendingSubMapKeyIterator(TreeMap.Entry last, TreeMap.Entry fence) { super(last, fence); } public K next() { return prevEntry().key; } public void remove() { removeDescending(); } public Spliterator trySplit() { return null; } public void forEachRemaining(Consumer action) { while (hasNext()) action.accept(next()); } public boolean tryAdvance(Consumer action) { if (hasNext()) { action.accept(next()); return true; } return false; } public long estimateSize() { return Long.MAX_VALUE; } public int characteristics() { return Spliterator.DISTINCT | Spliterator.ORDERED; } } } /** * @serial include */ static final class AscendingSubMap extends NavigableSubMap { private static final long serialVersionUID = 912986545866124124060L; AscendingSubMap(TreeMap m, boolean fromStart, K lo, boolean loInclusive, boolean toEnd, K hi, boolean hiInclusive) { super(m, fromStart, lo, loInclusive, toEnd, hi, hiInclusive); } public Comparator comparator() { return m.comparator(); } public NavigableMap subMap(K fromKey, boolean fromInclusive, K toKey, boolean toInclusive) { if (!inRange(fromKey, fromInclusive)) throw new IllegalArgumentException("fromKey out of range"); if (!inRange(toKey, toInclusive)) throw new IllegalArgumentException("toKey out of range"); return new AscendingSubMap<>(m, false, fromKey, fromInclusive, false, toKey, toInclusive); } public NavigableMap headMap(K toKey, boolean inclusive) { if (!inRange(toKey, inclusive)) throw new IllegalArgumentException("toKey out of range"); return new AscendingSubMap<>(m, fromStart, lo, loInclusive, false, toKey, inclusive); } public NavigableMap tailMap(K fromKey, boolean inclusive) { if (!inRange(fromKey, inclusive)) throw new IllegalArgumentException("fromKey out of range"); return new AscendingSubMap<>(m, false, fromKey, inclusive, toEnd, hi, hiInclusive); } public NavigableMap descendingMap() { NavigableMap mv = descendingMapView; return (mv != null) ? mv : (descendingMapView = new DescendingSubMap<>(m, fromStart, lo, loInclusive, toEnd, hi, hiInclusive)); } Iterator keyIterator() { return new SubMapKeyIterator(absLowest(), absHighFence()); } Spliterator keySpliterator() { return new SubMapKeyIterator(absLowest(), absHighFence()); } Iterator descendingKeyIterator() { return new DescendingSubMapKeyIterator(absHighest(), absLowFence()); } final class AscendingEntrySetView extends EntrySetView { public Iterator> iterator() { return new SubMapEntryIterator(absLowest(), absHighFence()); } } public Set> entrySet() { EntrySetView es = entrySetView; return (es != null) ? es : (entrySetView = new AscendingEntrySetView()); } TreeMap.Entry subLowest() { return absLowest(); } TreeMap.Entry subHighest() { return absHighest(); } TreeMap.Entry subCeiling(K key) { return absCeiling(key); } TreeMap.Entry subHigher(K key) { return absHigher(key); } TreeMap.Entry subFloor(K key) { return absFloor(key); } TreeMap.Entry subLower(K key) { return absLower(key); } } /** * @serial include */ static final class DescendingSubMap extends NavigableSubMap { private static final long serialVersionUID = 912986545866120460L; DescendingSubMap(TreeMap m, boolean fromStart, K lo, boolean loInclusive, boolean toEnd, K hi, boolean hiInclusive) { super(m, fromStart, lo, loInclusive, toEnd, hi, hiInclusive); } private final Comparator reverseComparator = Collections.reverseOrder(m.comparator); public Comparator comparator() { return reverseComparator; } public NavigableMap subMap(K fromKey, boolean fromInclusive, K toKey, boolean toInclusive) { if (!inRange(fromKey, fromInclusive)) throw new IllegalArgumentException("fromKey out of range"); if (!inRange(toKey, toInclusive)) throw new IllegalArgumentException("toKey out of range"); return new DescendingSubMap<>(m, false, toKey, toInclusive, false, fromKey, fromInclusive); } public NavigableMap headMap(K toKey, boolean inclusive) { if (!inRange(toKey, inclusive)) throw new IllegalArgumentException("toKey out of range"); return new DescendingSubMap<>(m, false, toKey, inclusive, toEnd, hi, hiInclusive); } public NavigableMap tailMap(K fromKey, boolean inclusive) { if (!inRange(fromKey, inclusive)) throw new IllegalArgumentException("fromKey out of range"); return new DescendingSubMap<>(m, fromStart, lo, loInclusive, false, fromKey, inclusive); } public NavigableMap descendingMap() { NavigableMap mv = descendingMapView; return (mv != null) ? mv : (descendingMapView = new AscendingSubMap<>(m, fromStart, lo, loInclusive, toEnd, hi, hiInclusive)); } Iterator keyIterator() { return new DescendingSubMapKeyIterator(absHighest(), absLowFence()); } Spliterator keySpliterator() { return new DescendingSubMapKeyIterator(absHighest(), absLowFence()); } Iterator descendingKeyIterator() { return new SubMapKeyIterator(absLowest(), absHighFence()); } final class DescendingEntrySetView extends EntrySetView { public Iterator> iterator() { return new DescendingSubMapEntryIterator(absHighest(), absLowFence()); } } public Set> entrySet() { EntrySetView es = entrySetView; return (es != null) ? es : (entrySetView = new DescendingEntrySetView()); } TreeMap.Entry subLowest() { return absHighest(); } TreeMap.Entry subHighest() { return absLowest(); } TreeMap.Entry subCeiling(K key) { return absFloor(key); } TreeMap.Entry subHigher(K key) { return absLower(key); } TreeMap.Entry subFloor(K key) { return absCeiling(key); } TreeMap.Entry subLower(K key) { return absHigher(key); } } /** * This class exists solely for the sake of serialization * compatibility with previous releases of TreeMap that did not * support NavigableMap. It translates an old-version SubMap into * a new-version AscendingSubMap. This class is never otherwise * used. * * @serial include */ private class SubMap extends AbstractMap implements SortedMap, java.io.Serializable { private static final long serialVersionUID = -6520786458950516097L; private boolean fromStart = false, toEnd = false; private K fromKey, toKey; private Object readResolve() { return new AscendingSubMap<>(TreeMap.this, fromStart, fromKey, true, toEnd, toKey, false); } public Set> entrySet() { throw new InternalError(); } public K lastKey() { throw new InternalError(); } public K firstKey() { throw new InternalError(); } public SortedMap subMap(K fromKey, K toKey) { throw new InternalError(); } public SortedMap headMap(K toKey) { throw new InternalError(); } public SortedMap tailMap(K fromKey) { throw new InternalError(); } public Comparator comparator() { throw new InternalError(); } } // Red-black mechanics private static final boolean RED = false; private static final boolean BLACK = true; /** * Node in the Tree. Doubles as a means to pass key-value pairs back to * user (see Map.Entry). */ static final class Entry implements Map.Entry { K key; V value; Entry left; Entry right; Entry parent; boolean color = BLACK; /** * Make a new cell with given key, value, and parent, and with * {@code null} child links, and BLACK color. */ Entry(K key, V value, Entry parent) { this.key = key; this.value = value; this.parent = parent; } /** * Returns the key. * * @return the key */ public K getKey() { return key; } /** * Returns the value associated with the key. * * @return the value associated with the key */ public V getValue() { return value; } /** * Replaces the value currently associated with the key with the given * value. * * @return the value associated with the key before this method was * called */ public V setValue(V value) { V oldValue = this.value; this.value = value; return oldValue; } public boolean equals(Object o) { if (!(o instanceof Map.Entry)) return false; Map.Entry e = (Map.Entry)o; return valEquals(key,e.getKey()) && valEquals(value,e.getValue()); } public int hashCode() { int keyHash = (key==null ? 0 : key.hashCode()); int valueHash = (value==null ? 0 : value.hashCode()); return keyHash ^ valueHash; } public String toString() { return key + "=" + value; } } /** * Returns the first Entry in the TreeMap (according to the TreeMap's * key-sort function). Returns null if the TreeMap is empty. */ final Entry getFirstEntry() { Entry p = root; if (p != null) while (p.left != null) p = p.left; return p; } /** * Returns the last Entry in the TreeMap (according to the TreeMap's * key-sort function). Returns null if the TreeMap is empty. */ final Entry getLastEntry() { Entry p = root; if (p != null) while (p.right != null) p = p.right; return p; } /** * Returns the successor of the specified Entry, or null if no such. */ static TreeMap.Entry successor(Entry t) { if (t == null) return null; else if (t.right != null) { Entry p = t.right; while (p.left != null) p = p.left; return p; } else { Entry p = t.parent; Entry ch = t; while (p != null && ch == p.right) { ch = p; p = p.parent; } return p; } } /** * Returns the predecessor of the specified Entry, or null if no such. */ static Entry predecessor(Entry t) { if (t == null) return null; else if (t.left != null) { Entry p = t.left; while (p.right != null) p = p.right; return p; } else { Entry p = t.parent; Entry ch = t; while (p != null && ch == p.left) { ch = p; p = p.parent; } return p; } } /** * Balancing operations. * * Implementations of rebalancings during insertion and deletion are * slightly different than the CLR version. Rather than using dummy * nilnodes, we use a set of accessors that deal properly with null. They * are used to avoid messiness surrounding nullness checks in the main * algorithms. */ private static boolean colorOf(Entry p) { return (p == null ? BLACK : p.color); } private static Entry parentOf(Entry p) { return (p == null ? null: p.parent); } private static void setColor(Entry p, boolean c) { if (p != null) p.color = c; } private static Entry leftOf(Entry p) { return (p == null) ? null: p.left; } private static Entry rightOf(Entry p) { return (p == null) ? null: p.right; } /** From CLR */ private void rotateLeft(Entry p) { if (p != null) { Entry r = p.right; p.right = r.left; if (r.left != null) r.left.parent = p; r.parent = p.parent; if (p.parent == null) root = r; else if (p.parent.left == p) p.parent.left = r; else p.parent.right = r; r.left = p; p.parent = r; } } /** From CLR */ private void rotateRight(Entry p) { if (p != null) { Entry l = p.left; p.left = l.right; if (l.right != null) l.right.parent = p; l.parent = p.parent; if (p.parent == null) root = l; else if (p.parent.right == p) p.parent.right = l; else p.parent.left = l; l.right = p; p.parent = l; } } /** From CLR */ private void fixAfterInsertion(Entry x) { x.color = RED; while (x != null && x != root && x.parent.color == RED) { if (parentOf(x) == leftOf(parentOf(parentOf(x)))) { Entry y = rightOf(parentOf(parentOf(x))); if (colorOf(y) == RED) { setColor(parentOf(x), BLACK); setColor(y, BLACK); setColor(parentOf(parentOf(x)), RED); x = parentOf(parentOf(x)); } else { if (x == rightOf(parentOf(x))) { x = parentOf(x); rotateLeft(x); } setColor(parentOf(x), BLACK); setColor(parentOf(parentOf(x)), RED); rotateRight(parentOf(parentOf(x))); } } else { Entry y = leftOf(parentOf(parentOf(x))); if (colorOf(y) == RED) { setColor(parentOf(x), BLACK); setColor(y, BLACK); setColor(parentOf(parentOf(x)), RED); x = parentOf(parentOf(x)); } else { if (x == leftOf(parentOf(x))) { x = parentOf(x); rotateRight(x); } setColor(parentOf(x), BLACK); setColor(parentOf(parentOf(x)), RED); rotateLeft(parentOf(parentOf(x))); } } } root.color = BLACK; } /** * Delete node p, and then rebalance the tree. */ private void deleteEntry(Entry p) { modCount++; size--; // If strictly internal, copy successor's element to p and then make p // point to successor. if (p.left != null && p.right != null) { Entry s = successor(p); p.key = s.key; p.value = s.value; p = s; } // p has 2 children // Start fixup at replacement node, if it exists. Entry replacement = (p.left != null ? p.left : p.right); if (replacement != null) { // Link replacement to parent replacement.parent = p.parent; if (p.parent == null) root = replacement; else if (p == p.parent.left) p.parent.left = replacement; else p.parent.right = replacement; // Null out links so they are OK to use by fixAfterDeletion. p.left = p.right = p.parent = null; // Fix replacement if (p.color == BLACK) fixAfterDeletion(replacement); } else if (p.parent == null) { // return if we are the only node. root = null; } else { // No children. Use self as phantom replacement and unlink. if (p.color == BLACK) fixAfterDeletion(p); if (p.parent != null) { if (p == p.parent.left) p.parent.left = null; else if (p == p.parent.right) p.parent.right = null; p.parent = null; } } } /** From CLR */ private void fixAfterDeletion(Entry x) { while (x != root && colorOf(x) == BLACK) { if (x == leftOf(parentOf(x))) { Entry sib = rightOf(parentOf(x)); if (colorOf(sib) == RED) { setColor(sib, BLACK); setColor(parentOf(x), RED); rotateLeft(parentOf(x)); sib = rightOf(parentOf(x)); } if (colorOf(leftOf(sib)) == BLACK && colorOf(rightOf(sib)) == BLACK) { setColor(sib, RED); x = parentOf(x); } else { if (colorOf(rightOf(sib)) == BLACK) { setColor(leftOf(sib), BLACK); setColor(sib, RED); rotateRight(sib); sib = rightOf(parentOf(x)); } setColor(sib, colorOf(parentOf(x))); setColor(parentOf(x), BLACK); setColor(rightOf(sib), BLACK); rotateLeft(parentOf(x)); x = root; } } else { // symmetric Entry sib = leftOf(parentOf(x)); if (colorOf(sib) == RED) { setColor(sib, BLACK); setColor(parentOf(x), RED); rotateRight(parentOf(x)); sib = leftOf(parentOf(x)); } if (colorOf(rightOf(sib)) == BLACK && colorOf(leftOf(sib)) == BLACK) { setColor(sib, RED); x = parentOf(x); } else { if (colorOf(leftOf(sib)) == BLACK) { setColor(rightOf(sib), BLACK); setColor(sib, RED); rotateLeft(sib); sib = leftOf(parentOf(x)); } setColor(sib, colorOf(parentOf(x))); setColor(parentOf(x), BLACK); setColor(leftOf(sib), BLACK); rotateRight(parentOf(x)); x = root; } } } setColor(x, BLACK); } private static final long serialVersionUID = 919286545866124124006L; /** * Save the state of the {@code TreeMap} instance to a stream (i.e., * serialize it). * * @serialData The size of the TreeMap (the number of key-value * mappings) is emitted (int), followed by the key (Object) * and value (Object) for each key-value mapping represented * by the TreeMap. The key-value mappings are emitted in * key-order (as determined by the TreeMap's Comparator, * or by the keys' natural ordering if the TreeMap has no * Comparator). */ private void writeObject(java.io.ObjectOutputStream s) throws java.io.IOException { // Write out the Comparator and any hidden stuff s.defaultWriteObject(); // Write out size (number of Mappings) s.writeInt(size); // Write out keys and values (alternating) for (Iterator> i = entrySet().iterator(); i.hasNext(); ) { Map.Entry e = i.next(); s.writeObject(e.getKey()); s.writeObject(e.getValue()); } } /** * Reconstitute the {@code TreeMap} instance from a stream (i.e., * deserialize it). */ private void readObject(final java.io.ObjectInputStream s) throws java.io.IOException, ClassNotFoundException { // Read in the Comparator and any hidden stuff s.defaultReadObject(); // Read in size int size = s.readInt(); buildFromSorted(size, null, s, null); } /** Intended to be called only from TreeSet.readObject */ void readTreeSet(int size, java.io.ObjectInputStream s, V defaultVal) throws java.io.IOException, ClassNotFoundException { buildFromSorted(size, null, s, defaultVal); } /** Intended to be called only from TreeSet.addAll */ void addAllForTreeSet(SortedSet set, V defaultVal) { try { buildFromSorted(set.size(), set.iterator(), null, defaultVal); } catch (java.io.IOException cannotHappen) { } catch (ClassNotFoundException cannotHappen) { } } /** * Linear time tree building algorithm from sorted data. Can accept keys * and/or values from iterator or stream. This leads to too many * parameters, but seems better than alternatives. The four formats * that this method accepts are: * * 1) An iterator of Map.Entries. (it != null, defaultVal == null). * 2) An iterator of keys. (it != null, defaultVal != null). * 3) A stream of alternating serialized keys and values. * (it == null, defaultVal == null). * 4) A stream of serialized keys. (it == null, defaultVal != null). * * It is assumed that the comparator of the TreeMap is already set prior * to calling this method. * * @param size the number of keys (or key-value pairs) to be read from * the iterator or stream * @param it If non-null, new entries are created from entries * or keys read from this iterator. * @param str If non-null, new entries are created from keys and * possibly values read from this stream in serialized form. * Exactly one of it and str should be non-null. * @param defaultVal if non-null, this default value is used for * each value in the map. If null, each value is read from * iterator or stream, as described above. * @throws java.io.IOException propagated from stream reads. This cannot * occur if str is null. * @throws ClassNotFoundException propagated from readObject. * This cannot occur if str is null. */ private void buildFromSorted(int size, Iterator it, java.io.ObjectInputStream str, V defaultVal) throws java.io.IOException, ClassNotFoundException { this.size = size; root = buildFromSorted(0, 0, size-1, computeRedLevel(size), it, str, defaultVal); } /** * Recursive "helper method" that does the real work of the * previous method. Identically named parameters have * identical definitions. Additional parameters are documented below. * It is assumed that the comparator and size fields of the TreeMap are * already set prior to calling this method. (It ignores both fields.) * * @param level the current level of tree. Initial call should be 0. * @param lo the first element index of this subtree. Initial should be 0. * @param hi the last element index of this subtree. Initial should be * size-1. * @param redLevel the level at which nodes should be red. * Must be equal to computeRedLevel for tree of this size. */ @SuppressWarnings("unchecked") private final Entry buildFromSorted(int level, int lo, int hi, int redLevel, Iterator it, java.io.ObjectInputStream str, V defaultVal) throws java.io.IOException, ClassNotFoundException { /* * Strategy: The root is the middlemost element. To get to it, we * have to first recursively construct the entire left subtree, * so as to grab all of its elements. We can then proceed with right * subtree. * * The lo and hi arguments are the minimum and maximum * indices to pull out of the iterator or stream for current subtree. * They are not actually indexed, we just proceed sequentially, * ensuring that items are extracted in corresponding order. */ if (hi < lo) return null; int mid = (lo + hi) >>> 1; Entry left = null; if (lo < mid) left = buildFromSorted(level+1, lo, mid - 1, redLevel, it, str, defaultVal); // extract key and/or value from iterator or stream K key; V value; if (it != null) { if (defaultVal==null) { Map.Entry entry = (Map.Entry)it.next(); key = (K)entry.getKey(); value = (V)entry.getValue(); } else { key = (K)it.next(); value = defaultVal; } } else { // use stream key = (K) str.readObject(); value = (defaultVal != null ? defaultVal : (V) str.readObject()); } Entry middle = new Entry<>(key, value, null); // color nodes in non-full bottommost level red if (level == redLevel) middle.color = RED; if (left != null) { middle.left = left; left.parent = middle; } if (mid < hi) { Entry right = buildFromSorted(level+1, mid+1, hi, redLevel, it, str, defaultVal); middle.right = right; right.parent = middle; } return middle; } /** * Find the level down to which to assign all nodes BLACK. This is the * last `full' level of the complete binary tree produced by * buildTree. The remaining nodes are colored RED. (This makes a `nice' * set of color assignments wrt future insertions.) This level number is * computed by finding the number of splits needed to reach the zeroeth * node. (The answer is ~lg(N), but in any case must be computed by same * quick O(lg(N)) loop.) */ private static int computeRedLevel(int sz) { int level = 0; for (int m = sz - 1; m >= 0; m = m / 2 - 1) level++; return level; } /** * Currently, we support Spliterator-based versions only for the * full map, in either plain of descending form, otherwise relying * on defaults because size estimation for submaps would dominate * costs. The type tests needed to check these for key views are * not very nice but avoid disrupting existing class * structures. Callers must use plain default spliterators if this * returns null. */ static Spliterator keySpliteratorFor(NavigableMap m) { if (m instanceof TreeMap) { @SuppressWarnings("unchecked") TreeMap t = (TreeMap) m; return t.keySpliterator(); } if (m instanceof DescendingSubMap) { @SuppressWarnings("unchecked") DescendingSubMap dm = (DescendingSubMap) m; TreeMap tm = dm.m; if (dm == tm.descendingMap) { @SuppressWarnings("unchecked") TreeMap t = (TreeMap) tm; return t.descendingKeySpliterator(); } } @SuppressWarnings("unchecked") NavigableSubMap sm = (NavigableSubMap) m; return sm.keySpliterator(); } final Spliterator keySpliterator() { return new KeySpliterator(this, null, null, 0, -1, 0); } final Spliterator descendingKeySpliterator() { return new DescendingKeySpliterator(this, null, null, 0, -2, 0); } /** * Base class for spliterators. Iteration starts at a given * origin and continues up to but not including a given fence (or * null for end). At top-level, for ascending cases, the first * split uses the root as left-fence/right-origin. From there, * right-hand splits replace the current fence with its left * child, also serving as origin for the split-off spliterator. * Left-hands are symmetric. Descending versions place the origin * at the end and invert ascending split rules. This base class * is non-commital about directionality, or whether the top-level * spliterator covers the whole tree. This means that the actual * split mechanics are located in subclasses. Some of the subclass * trySplit methods are identical (except for return types), but * not nicely factorable. * * Currently, subclass versions exist only for the full map * (including descending keys via its descendingMap). Others are * possible but currently not worthwhile because submaps require * O(n) computations to determine size, which substantially limits * potential speed-ups of using custom Spliterators versus default * mechanics. * * To boostrap initialization, external constructors use * negative size estimates: -1 for ascend, -2 for descend. */ static class TreeMapSpliterator { final TreeMap tree; TreeMap.Entry current; // traverser; initially first node in range TreeMap.Entry fence; // one past last, or null int side; // 0: top, -1: is a left split, +1: right int est; // size estimate (exact only for top-level) int expectedModCount; // for CME checks TreeMapSpliterator(TreeMap tree, TreeMap.Entry origin, TreeMap.Entry fence, int side, int est, int expectedModCount) { this.tree = tree; this.current = origin; this.fence = fence; this.side = side; this.est = est; this.expectedModCount = expectedModCount; } final int getEstimate() { // force initialization int s; TreeMap t; if ((s = est) < 0) { if ((t = tree) != null) { current = (s == -1) ? t.getFirstEntry() : t.getLastEntry(); s = est = t.size; expectedModCount = t.modCount; } else s = est = 0; } return s; } public final long estimateSize() { return (long)getEstimate(); } } static final class KeySpliterator extends TreeMapSpliterator implements Spliterator { KeySpliterator(TreeMap tree, TreeMap.Entry origin, TreeMap.Entry fence, int side, int est, int expectedModCount) { super(tree, origin, fence, side, est, expectedModCount); } public KeySpliterator trySplit() { if (est < 0) getEstimate(); // force initialization int d = side; TreeMap.Entry e = current, f = fence, s = ((e == null || e == f) ? null : // empty (d == 0) ? tree.root : // was top (d > 0) ? e.right : // was right (d < 0 && f != null) ? f.left : // was left null); if (s != null && s != e && s != f && tree.compare(e.key, s.key) < 0) { // e not already past s side = 1; return new KeySpliterator<> (tree, e, current = s, -1, est >>>= 1, expectedModCount); } return null; } public void forEachRemaining(Consumer action) { if (action == null) throw new NullPointerException(); if (est < 0) getEstimate(); // force initialization TreeMap.Entry f = fence, e, p, pl; if ((e = current) != null && e != f) { current = f; // exhaust do { action.accept(e.key); if ((p = e.right) != null) { while ((pl = p.left) != null) p = pl; } else { while ((p = e.parent) != null && e == p.right) e = p; } } while ((e = p) != null && e != f); if (tree.modCount != expectedModCount) throw new ConcurrentModificationException(); } } public boolean tryAdvance(Consumer action) { TreeMap.Entry e; if (action == null) throw new NullPointerException(); if (est < 0) getEstimate(); // force initialization if ((e = current) == null || e == fence) return false; current = successor(e); action.accept(e.key); if (tree.modCount != expectedModCount) throw new ConcurrentModificationException(); return true; } public int characteristics() { return (side == 0 ? Spliterator.SIZED : 0) | Spliterator.DISTINCT | Spliterator.SORTED | Spliterator.ORDERED; } public final Comparator getComparator() { return tree.comparator; } } static final class DescendingKeySpliterator extends TreeMapSpliterator implements Spliterator { DescendingKeySpliterator(TreeMap tree, TreeMap.Entry origin, TreeMap.Entry fence, int side, int est, int expectedModCount) { super(tree, origin, fence, side, est, expectedModCount); } public DescendingKeySpliterator trySplit() { if (est < 0) getEstimate(); // force initialization int d = side; TreeMap.Entry e = current, f = fence, s = ((e == null || e == f) ? null : // empty (d == 0) ? tree.root : // was top (d < 0) ? e.left : // was left (d > 0 && f != null) ? f.right : // was right null); if (s != null && s != e && s != f && tree.compare(e.key, s.key) > 0) { // e not already past s side = 1; return new DescendingKeySpliterator<> (tree, e, current = s, -1, est >>>= 1, expectedModCount); } return null; } public void forEachRemaining(Consumer action) { if (action == null) throw new NullPointerException(); if (est < 0) getEstimate(); // force initialization TreeMap.Entry f = fence, e, p, pr; if ((e = current) != null && e != f) { current = f; // exhaust do { action.accept(e.key); if ((p = e.left) != null) { while ((pr = p.right) != null) p = pr; } else { while ((p = e.parent) != null && e == p.left) e = p; } } while ((e = p) != null && e != f); if (tree.modCount != expectedModCount) throw new ConcurrentModificationException(); } } public boolean tryAdvance(Consumer action) { TreeMap.Entry e; if (action == null) throw new NullPointerException(); if (est < 0) getEstimate(); // force initialization if ((e = current) == null || e == fence) return false; current = predecessor(e); action.accept(e.key); if (tree.modCount != expectedModCount) throw new ConcurrentModificationException(); return true; } public int characteristics() { return (side == 0 ? Spliterator.SIZED : 0) | Spliterator.DISTINCT | Spliterator.ORDERED; } } static final class ValueSpliterator extends TreeMapSpliterator implements Spliterator { ValueSpliterator(TreeMap tree, TreeMap.Entry origin, TreeMap.Entry fence, int side, int est, int expectedModCount) { super(tree, origin, fence, side, est, expectedModCount); } public ValueSpliterator trySplit() { if (est < 0) getEstimate(); // force initialization int d = side; TreeMap.Entry e = current, f = fence, s = ((e == null || e == f) ? null : // empty (d == 0) ? tree.root : // was top (d > 0) ? e.right : // was right (d < 0 && f != null) ? f.left : // was left null); if (s != null && s != e && s != f && tree.compare(e.key, s.key) < 0) { // e not already past s side = 1; return new ValueSpliterator<> (tree, e, current = s, -1, est >>>= 1, expectedModCount); } return null; } public void forEachRemaining(Consumer action) { if (action == null) throw new NullPointerException(); if (est < 0) getEstimate(); // force initialization TreeMap.Entry f = fence, e, p, pl; if ((e = current) != null && e != f) { current = f; // exhaust do { action.accept(e.value); if ((p = e.right) != null) { while ((pl = p.left) != null) p = pl; } else { while ((p = e.parent) != null && e == p.right) e = p; } } while ((e = p) != null && e != f); if (tree.modCount != expectedModCount) throw new ConcurrentModificationException(); } } public boolean tryAdvance(Consumer action) { TreeMap.Entry e; if (action == null) throw new NullPointerException(); if (est < 0) getEstimate(); // force initialization if ((e = current) == null || e == fence) return false; current = successor(e); action.accept(e.value); if (tree.modCount != expectedModCount) throw new ConcurrentModificationException(); return true; } public int characteristics() { return (side == 0 ? Spliterator.SIZED : 0) | Spliterator.ORDERED; } } static final class EntrySpliterator extends TreeMapSpliterator implements Spliterator> { EntrySpliterator(TreeMap tree, TreeMap.Entry origin, TreeMap.Entry fence, int side, int est, int expectedModCount) { super(tree, origin, fence, side, est, expectedModCount); } public EntrySpliterator trySplit() { if (est < 0) getEstimate(); // force initialization int d = side; TreeMap.Entry e = current, f = fence, s = ((e == null || e == f) ? null : // empty (d == 0) ? tree.root : // was top (d > 0) ? e.right : // was right (d < 0 && f != null) ? f.left : // was left null); if (s != null && s != e && s != f && tree.compare(e.key, s.key) < 0) { // e not already past s side = 1; return new EntrySpliterator<> (tree, e, current = s, -1, est >>>= 1, expectedModCount); } return null; } public void forEachRemaining(Consumer> action) { if (action == null) throw new NullPointerException(); if (est < 0) getEstimate(); // force initialization TreeMap.Entry f = fence, e, p, pl; if ((e = current) != null && e != f) { current = f; // exhaust do { action.accept(e); if ((p = e.right) != null) { while ((pl = p.left) != null) p = pl; } else { while ((p = e.parent) != null && e == p.right) e = p; } } while ((e = p) != null && e != f); if (tree.modCount != expectedModCount) throw new ConcurrentModificationException(); } } public boolean tryAdvance(Consumer> action) { TreeMap.Entry e; if (action == null) throw new NullPointerException(); if (est < 0) getEstimate(); // force initialization if ((e = current) == null || e == fence) return false; current = successor(e); action.accept(e); if (tree.modCount != expectedModCount) throw new ConcurrentModificationException(); return true; } public int characteristics() { return (side == 0 ? Spliterator.SIZED : 0) | Spliterator.DISTINCT | Spliterator.SORTED | Spliterator.ORDERED; } @Override public Comparator> getComparator() { // Adapt or create a key-based comparator if (tree.comparator != null) { return Map.Entry.comparingByKey(tree.comparator); } else { return (Comparator> & Serializable) (e1, e2) -> { @SuppressWarnings("unchecked") Comparable k1 = (Comparable) e1.getKey(); return k1.compareTo(e2.getKey()); }; } } } }

相关文章

java速学教程(入门到精通)
java速学教程(入门到精通)

java怎么学习?java怎么入门?java在哪学?java怎么学才快?不用担心,这里为大家提供了java速学教程(入门到精通),有需要的小伙伴保存下载就能学习啦!

下载

相关标签:

本站声明:本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn

相关专题

更多
c++主流开发框架汇总
c++主流开发框架汇总

本专题整合了c++开发框架推荐,阅读专题下面的文章了解更多详细内容。

97

2026.01.09

c++框架学习教程汇总
c++框架学习教程汇总

本专题整合了c++框架学习教程汇总,阅读专题下面的文章了解更多详细内容。

50

2026.01.09

学python好用的网站推荐
学python好用的网站推荐

本专题整合了python学习教程汇总,阅读专题下面的文章了解更多详细内容。

139

2026.01.09

学python网站汇总
学python网站汇总

本专题整合了学python网站汇总,阅读专题下面的文章了解更多详细内容。

12

2026.01.09

python学习网站
python学习网站

本专题整合了python学习相关推荐汇总,阅读专题下面的文章了解更多详细内容。

19

2026.01.09

俄罗斯手机浏览器地址汇总
俄罗斯手机浏览器地址汇总

汇总俄罗斯Yandex手机浏览器官方网址入口,涵盖国际版与俄语版,适配移动端访问,一键直达搜索、地图、新闻等核心服务。

81

2026.01.09

漫蛙稳定版地址大全
漫蛙稳定版地址大全

漫蛙稳定版地址大全汇总最新可用入口,包含漫蛙manwa漫画防走失官网链接,确保用户随时畅读海量正版漫画资源,建议收藏备用,避免因域名变动无法访问。

431

2026.01.09

php学习网站大全
php学习网站大全

精选多个优质PHP入门学习网站,涵盖教程、实战与文档,适合零基础到进阶开发者,助你高效掌握PHP编程。

49

2026.01.09

php网站搭建教程大全
php网站搭建教程大全

本合集专为零基础用户打造,涵盖PHP网站搭建全流程,从环境配置到实战开发,免费、易懂、系统化,助你快速入门建站!

13

2026.01.09

热门下载

更多
网站特效
/
网站源码
/
网站素材
/
前端模板

精品课程

更多
相关推荐
/
热门推荐
/
最新课程
Kotlin 教程
Kotlin 教程

共23课时 | 2.4万人学习

C# 教程
C# 教程

共94课时 | 6.5万人学习

Java 教程
Java 教程

共578课时 | 45万人学习

关于我们 免责申明 举报中心 意见反馈 讲师合作 广告合作 最新更新
php中文网:公益在线php培训,帮助PHP学习者快速成长!
关注服务号 技术交流群
PHP中文网订阅号
每天精选资源文章推送

Copyright 2014-2026 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号