定义
class Iterable(metaclass=ABCMeta):
__slots__ = ()
@abstractmethod
def __iter__(self):
while False:
yield None
@classmethod
def __subclasshook__(cls, C):
if cls is Iterable:
if any("__iter__" in B.__dict__ for B in C.__mro__):
return True
return NotImplemented由定义可知Iterable必然包含__iter__函数
定义
class Iterator(Iterable):
__slots__ = ()
@abstractmethod
def __next__(self):
'Return the next item from the iterator. When exhausted, raise StopIteration'
raise StopIteration
def __iter__(self):
return self
@classmethod
def __subclasshook__(cls, C):
if cls is Iterator:
if (any("__next__" in B.__dict__ for B in C.__mro__) and
any("__iter__" in B.__dict__ for B in C.__mro__)):
return True
return NotImplemented从定义可知Iterator包含__next__和__iter__函数,当next超出范围时将抛出StopIteration事件
类型关系
立即学习“Python免费学习笔记(深入)”;
#! /usr/bin/python #-*-coding:utf-8-*- from collections import Iterator,Iterable # 迭代器 s = 'abc' l = [1,2,3] d=iter(l) print(isinstance(s,Iterable)) # True print(isinstance(l,Iterable)) # True print(isinstance(s,Iterator)) # False print(isinstance(l,Iterator)) # False print(isinstance(d,Iterable)) # True print(isinstance(d,Iterator)) # True
理论上你可以使用next()来执行__next__(),直到迭代器抛出StopIteration 实际上系统提供了for .. in ..的方式来解析迭代器
l = [1,2,3,4]
for i in l:
print(i)
# 执行结果
# 1
# 2
# 3
# 4生成器的本质是一个迭代器
#! /usr/bin/python
#-*-coding:utf-8-*-
from collections import Iterator,Iterable
s = (x*2 for x in range(5))
print(s)
print('Is Iterable:' + str(isinstance(s,Iterable)))
print('Is Iterator:' + str(isinstance(s,Iterator)))
for x in s:
print(x)
# 执行结果
# <generator object <genexpr> at 0x000001E61C11F048>
# Is Iterable:True
# Is Iterator:True
# 0
# 2
# 4
# 6
# 8函数中如果存在yield 则该函数是一个生成器对象 在每一次执行next函数时该函数会在上一个yield处开始执行,并在下一个yield处返回(相当于return)
def foo():
print("First")
yield 1
print("Second")
yield 2
f = foo()
print(f)
a = next(f)
print(a)
b = next(f)
print(b)
# <generator object foo at 0x0000020B697F50F8>
# First
# 1
# Second
# 2实例
#! /usr/bin/python
#-*-coding:utf-8-*-
def add(s,x):
return s+x
def gen():
for i in range(4):
yield i
base = gen()
# 由于gen函数中存在yield,所以
# for 循环本质是创建了两个generator object,而非执行函数
# base = (add(i,10) for i in base)
# base = (add(i,10) for i in base)
for n in [1,10]:
base = (add(i,n) for i in base)
# 这里才开始展开生成器
# 第一个生成器展开
# base = (add(i,10) for i in base)
# base = (add(i,10) for i in range(4))
# base = (10,11,12,13)
#
# 第二个生成器展开
# base = (add(i,10) for i in (10,11,12,13))
# base = (20,21,22,23)
print(list(base)) # [20,21,22,23]以上就是Python中迭代器和生成器的示例详解的详细内容,更多请关注php中文网其它相关文章!
python怎么学习?python怎么入门?python在哪学?python怎么学才快?不用担心,这里为大家提供了python速学教程(入门到精通),有需要的小伙伴保存下载就能学习啦!
Copyright 2014-2025 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号