0

0

python之DataFrame实现excel合并单元格_python

不言

不言

发布时间:2018-04-02 16:19:21

|

10259人浏览过

|

来源于php中文网

原创

这篇文章主要为大家详细介绍了python之dataframe实现excel合并单元格,具有一定的参考价值,感兴趣的小伙伴们可以参考一下

在工作中经常遇到需要将数据输出到excel,且需要对其中一些单元格进行合并,比如如下表表格,需要根据A列的值,合并B、C列的对应单元格

pandas中的to_excel方法只能对索引进行合并,而xlsxwriter中,虽然提供有merge_range方法,但是这只是一个和基础的方法,每次都需要编写繁琐的测试才能最终调好,而且不能很好的重用。所以想自己写一个方法,结合dataframe和merge_range。大概思路是:

1、定义一个MY_DataFrame类,继承DataFrame类,这样能很好的利用pandas的很多特性,而不用自己重新组织数据结构。
2、定义一个my_mergewr_excel方法,参数分别为:输出excel的路径、用于判断是否需要合并的key_cols列表、用于指明哪些列上的单元格需要被合并的列表
3、将MY_DataFrame封装为一个My_Module模块,以备重用。

合并的算法如下:

立即学习Python免费学习笔记(深入)”;

1、根据给定参数的【关键列】,进行分组计数和排序,添加CN和RN两个辅助列
2、判断CN大于1的,该分组需要合并,否则该分组(行)无需合并(CN=1说明这个分组数据行是唯一的,无需合并)
3、对应需要合并的分组,判断当前列是不是在给定参数【合并列】中,是则用合并写excel单元格,否则就是普通的写excel单元格。
4、在需要合并的列中,如果对于的RN=1则调用merge_range,一次性写想下写CN个单元格,如果RN>1则跳过该单元格,因为在RN=1的时候,已经合并写了该单元格,若再重复调用erge_range,打开excel文档时会报错。

用图解释如下:

具体代码如下:

# -*- coding: utf-8 -*- 
""" 
Created on 20170301 
 
@author: ARK-Z 
""" 
import xlsxwriter 
 
 
import pandas as pd 
 
class My_DataFrame(pd.DataFrame): 
  def __init__(self, data=None, index=None, columns=None, dtype=None, copy=False): 
    pd.DataFrame.__init__(self, data, index, columns, dtype, copy) 
 
  def my_mergewr_excel(self,path,key_cols=[],merge_cols=[]): 
    # sheet_name='Sheet1', na_rep='', float_format=None, columns=None, header=True, index=True, index_label=None, startrow=0, startcol=0, engine=None, merge_cells=True, encoding=None, inf_rep='inf', verbose=True): 
    self_copy=My_DataFrame(self,copy=True) 
    line_cn=self_copy.index.size 
    cols=list(self_copy.columns.values) 
    if all([v in cols for i,v in enumerate(key_cols)])==False:   #校验key_cols中各元素 是否都包含与对象的列 
      print("key_cols is not completely include object's columns") 
      return False 
    if all([v in cols for i,v in enumerate(merge_cols)])==False: #校验merge_cols中各元素 是否都包含与对象的列 
      print("merge_cols is not completely include object's columns") 
      return False   
 
    wb2007 = xlsxwriter.Workbook(path) 
    worksheet2007 = wb2007.add_worksheet() 
    format_top = wb2007.add_format({'border':1,'bold':True,'text_wrap':True}) 
    format_other = wb2007.add_format({'border':1,'valign':'vcenter'}) 
    for i,value in enumerate(cols): #写表头 
      #print(value) 
      worksheet2007.write(0,i,value,format_top) 
     
    #merge_cols=['B','A','C'] 
    #key_cols=['A','B'] 
    if key_cols ==[]:  #如果key_cols 参数不传值,则无需合并 
      self_copy['RN']=1 
      self_copy['CN']=1 
    else: 
      self_copy['RN']=self_copy.groupby(key_cols,as_index=False).rank(method='first').ix[:,0] #以key_cols作为是否合并的依据 
      self_copy['CN']=self_copy.groupby(key_cols,as_index=False).rank(method='max').ix[:,0] 
    #print(self) 
    for i in range(line_cn): 
      if self_copy.ix[i,'CN']>1: 
        #print('该行有需要合并的单元格') 
        for j,col in enumerate(cols): 
          #print(self_copy.ix[i,col]) 
          if col in (merge_cols):  #哪些列需要合并 
            if self_copy.ix[i,'RN']==1: #合并写第一个单元格,下一个第一个将不再写 
              worksheet2007.merge_range(i+1,j,i+int(self_copy.ix[i,'CN']),j, self_copy.ix[i,col],format_other) ##合并单元格,根据LINE_SET[7]判断需要合并几个 
              #worksheet2007.write(i+1,j,df.ix[i,col]) 
            else: 
              pass 
            #worksheet2007.write(i+1,j,df.ix[i,j]) 
          else: 
            worksheet2007.write(i+1,j,self_copy.ix[i,col],format_other) 
          #print(',') 
      else: 
        #print('该行无需要合并的单元格') 
        for j,col in enumerate(cols): 
          #print(df.ix[i,col]) 
          worksheet2007.write(i+1,j,self_copy.ix[i,col],format_other) 
         
         
    wb2007.close() 
    self_copy.drop('CN', axis=1) 
    self_copy.drop('RN', axis=1)

Pic Copilot
Pic Copilot

AI时代的顶级电商设计师,轻松打造爆款产品图片

下载

调用代码:

import My_Module 
 
DF=My_DataFrame({'A':[1,2,2,2,3,3],'B':[1,1,1,1,1,1],'C':[1,1,1,1,1,1],'D':[1,1,1,1,1,1]}) 
 
DF 
Out[120]:  
  A B C D 
0 1 1 1 1 
1 2 1 1 1 
2 2 1 1 1 
3 2 1 1 1 
4 3 1 1 1 
5 3 1 1 1  


DF.my_mergewr_excel('000_2.xlsx',['A'],['B','C'])

效果如下:

也可以设置合并A、B列:

DF.my_mergewr_excel('000_2.xlsx',['A'],['A','B'])

效果如下:

相关专题

更多
python开发工具
python开发工具

php中文网为大家提供各种python开发工具,好的开发工具,可帮助开发者攻克编程学习中的基础障碍,理解每一行源代码在程序执行时在计算机中的过程。php中文网还为大家带来python相关课程以及相关文章等内容,供大家免费下载使用。

752

2023.06.15

python打包成可执行文件
python打包成可执行文件

本专题为大家带来python打包成可执行文件相关的文章,大家可以免费的下载体验。

636

2023.07.20

python能做什么
python能做什么

python能做的有:可用于开发基于控制台的应用程序、多媒体部分开发、用于开发基于Web的应用程序、使用python处理数据、系统编程等等。本专题为大家提供python相关的各种文章、以及下载和课程。

758

2023.07.25

format在python中的用法
format在python中的用法

Python中的format是一种字符串格式化方法,用于将变量或值插入到字符串中的占位符位置。通过format方法,我们可以动态地构建字符串,使其包含不同值。php中文网给大家带来了相关的教程以及文章,欢迎大家前来阅读学习。

618

2023.07.31

python教程
python教程

Python已成为一门网红语言,即使是在非编程开发者当中,也掀起了一股学习的热潮。本专题为大家带来python教程的相关文章,大家可以免费体验学习。

1262

2023.08.03

python环境变量的配置
python环境变量的配置

Python是一种流行的编程语言,被广泛用于软件开发、数据分析和科学计算等领域。在安装Python之后,我们需要配置环境变量,以便在任何位置都能够访问Python的可执行文件。php中文网给大家带来了相关的教程以及文章,欢迎大家前来学习阅读。

547

2023.08.04

python eval
python eval

eval函数是Python中一个非常强大的函数,它可以将字符串作为Python代码进行执行,实现动态编程的效果。然而,由于其潜在的安全风险和性能问题,需要谨慎使用。php中文网给大家带来了相关的教程以及文章,欢迎大家前来学习阅读。

577

2023.08.04

scratch和python区别
scratch和python区别

scratch和python的区别:1、scratch是一种专为初学者设计的图形化编程语言,python是一种文本编程语言;2、scratch使用的是基于积木的编程语法,python采用更加传统的文本编程语法等等。本专题为大家提供scratch和python相关的文章、下载、课程内容,供大家免费下载体验。

706

2023.08.11

Java 桌面应用开发(JavaFX 实战)
Java 桌面应用开发(JavaFX 实战)

本专题系统讲解 Java 在桌面应用开发领域的实战应用,重点围绕 JavaFX 框架,涵盖界面布局、控件使用、事件处理、FXML、样式美化(CSS)、多线程与UI响应优化,以及桌面应用的打包与发布。通过完整示例项目,帮助学习者掌握 使用 Java 构建现代化、跨平台桌面应用程序的核心能力。

36

2026.01.14

热门下载

更多
网站特效
/
网站源码
/
网站素材
/
前端模板

精品课程

更多
相关推荐
/
热门推荐
/
最新课程
最新Python教程 从入门到精通
最新Python教程 从入门到精通

共4课时 | 0.7万人学习

Django 教程
Django 教程

共28课时 | 3.1万人学习

SciPy 教程
SciPy 教程

共10课时 | 1.1万人学习

关于我们 免责申明 举报中心 意见反馈 讲师合作 广告合作 最新更新
php中文网:公益在线php培训,帮助PHP学习者快速成长!
关注服务号 技术交流群
PHP中文网订阅号
每天精选资源文章推送

Copyright 2014-2026 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号