总结
豆包 AI 助手文章总结

python能做回归么

little bottle
发布: 2019-05-22 10:04:10
原创
3011人浏览过
Python可以实现线性回归,实现方法:1、在scikit-learn库中调用linear_model来拟合数据;2、使用Scipy.polyfit()或者numpy.polyfit();3、使用高度专业化的线性回归函数Stats.linregress()。

python能做回归么

线性回归作为数据科学界元老级的模型,它几乎是所有数据科学家的入门必修课。抛开涉及大量数统的模型分析和检验不说,你真的就能熟练应用线性回归了么?下面我将给大家介绍几种用Python实现回归。

方法一:scikit-learn库中调用linear_model

由于机器学习库scikit-learn的广泛流行,常用的方法是从该库中调用linear_model来拟合数据。

虽然这可以提供机器学习的其他流水线特征(例如:数据归一化,模型系数正则化,将线性模型传递到另一个下游模型)的其他优点,但是当一个数据分析师需要快速而简便地确定回归系数(和一些基本相关统计量)时,这通常不是最快速简便的方法。

立即学习Python免费学习笔记(深入)”;

方法二:Scipy.polyfit( ) or numpy.polyfit( )

这是一个最基本的最小二乘多项式拟合函数(least squares polynomial fit function),接受数据集和任何维度的多项式函数(由用户指定),并返回一组使平方误差最小的系数。

对于简单的线性回归来说,可以选择1维函数。但是如果你想拟合更高维的模型,则可以从线性特征数据中构建多项式特征并拟合模型。

方法三:Stats.linregress( )

这是一个高度专业化的线性回归函数,可以在SciPy的统计模块中找到。然而因为它仅被用来优化计算两组测量数据的最小二乘回归,所以其灵活性相当受限。因此,不能使用它进行广义线性模型和多元回归拟合。

但是,由于其特殊性,它是简单线性回归中最快速的方法之一。除了拟合的系数和截距项之外,它还返回基本统计量,如R2系数和标准差。

以上就是python能做回归么的详细内容,更多请关注php中文网其它相关文章!

python速学教程(入门到精通)
python速学教程(入门到精通)

python怎么学习?python怎么入门?python在哪学?python怎么学才快?不用担心,这里为大家提供了python速学教程(入门到精通),有需要的小伙伴保存下载就能学习啦!

下载
来源:php中文网
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn
作者最新文章
最新问题
豆包 AI 助手文章总结
开源免费商场系统广告
热门教程
更多>
最新下载
更多>
网站特效
网站源码
网站素材
前端模板
关于我们 免责申明 意见反馈 讲师合作 广告合作 最新更新
php中文网:公益在线php培训,帮助PHP学习者快速成长!
关注服务号 技术交流群
PHP中文网订阅号
每天精选资源文章推送
PHP中文网APP
随时随地碎片化学习
PHP中文网抖音号
发现有趣的

Copyright 2014-2025 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号