0

0

人工智能算法介绍

(*-*)浩

(*-*)浩

发布时间:2019-06-10 13:52:46

|

24959人浏览过

|

来源于php中文网

原创

人工智能的三大基石—算法、数据和计算能力,算法作为其中之一,是非常重要的,那么人工智能都会涉及哪些算法呢?

人工智能算法介绍

按照模型训练方式不同可以分为监督学习(Supervised Learning),无监督学习(Unsupervised Learning)、半监督学习(Semi-supervised Learning)和强化学习(Reinforcement Learning)四大类。

常见的监督学习算法包含以下几类:(推荐学习:PHP视频教程

(1)人工神经网络(Artificial Neural Network)类:反向传播(Backpropagation)、波尔兹曼机(Boltzmann Machine)、卷积神经网络(Convolutional Neural Network)、Hopfield网络(hopfield Network)、多层感知器(Multilyer Perceptron)、径向基函数网络(Radial Basis Function Network,RBFN)、受限波尔兹曼机(Restricted Boltzmann Machine)、回归神经网络(Recurrent Neural Network,RNN)、自组织映射(Self-organizing Map,SOM)、尖峰神经网络(Spiking Neural Network)等。

(2)贝叶斯类(Bayesin):朴素贝叶斯(Naive Bayes)、高斯贝叶斯(Gaussian Naive Bayes)、多项朴素贝叶斯(Multinomial Naive Bayes)、平均-依赖性评估(Averaged One-Dependence Estimators,AODE)

贝叶斯信念网络(Bayesian Belief Network,BBN)、贝叶斯网络(Bayesian Network,BN)等。

(3)决策树(Decision Tree)类:分类和回归树(Classification and Regression Tree,CART)、迭代Dichotomiser3(Iterative Dichotomiser 3, ID3),C4.5算法(C4.5 Algorithm)、C5.0算法(C5.0 Algorithm)、卡方自动交互检测(Chi-squared Automatic Interaction Detection,CHAID)、决策残端(Decision Stump)、ID3算法(ID3 Algorithm)、随机森林(Random Forest)、SLIQ(Supervised Learning in Quest)等。

(4)线性分类器(Linear Classifier)类:Fisher的线性判别(Fisher’s Linear Discriminant)

线性回归(Linear Regression)、逻辑回归(Logistic Regression)、多项逻辑回归(Multionmial Logistic Regression)、朴素贝叶斯分类器(Naive Bayes Classifier)、感知(Perception)、支持向量机(Support Vector Machine)等。

常见的无监督学习类算法包括:

(1) 人工神经网络(Artificial Neural Network)类:生成对抗网络(Generative Adversarial Networks,GAN),前馈神经网络(Feedforward Neural Network)、逻辑学习机(Logic Learning Machine)、自组织映射(Self-organizing Map)等。

(2) 关联规则学习(Association Rule Learning)类:先验算法(Apriori Algorithm)、Eclat算法(Eclat Algorithm)、FP-Growth算法等。

Mubert
Mubert

Mubert -一个使用人工智能算法和机器学习生成连续音乐流的平台

下载

(3)分层聚类算法(Hierarchical Clustering):单连锁聚类(Single-linkage Clustering),概念聚类(Conceptual Clustering)等。

(4)聚类分析(Cluster analysis):BIRCH算法、DBSCAN算法,期望最大化(Expectation-maximization,EM)、模糊聚类(Fuzzy Clustering)、K-means算法、K均值聚类(K-means Clustering)、K-medians聚类、均值漂移算法(Mean-shift)、OPTICS算法等。

(5)异常检测(Anomaly detection)类:K最邻近(K-nearest Neighbor,KNN)算法,局部异常因子算法(Local Outlier Factor,LOF)等。

常见的半监督学习类算法包含:

生成模型(Generative Models)、低密度分离(Low-density Separation)、基于图形的方法(Graph-based Methods)、联合训练(Co-training)等。

常见的强化学习类算法包含:

Q学习(Q-learning)、状态-行动-奖励-状态-行动(State-Action-Reward-State-Action,SARSA)、DQN(Deep Q Network)、策略梯度算法(Policy Gradients)、基于模型强化学习(Model Based RL)、时序差分学习(Temporal Different Learning)等。

常见的深度学习类算法包含:

深度信念网络(Deep Belief Machines)、深度卷积神经网络(Deep Convolutional Neural Networks)、深度递归神经网络(Deep Recurrent Neural Network)、分层时间记忆(Hierarchical Temporal Memory,HTM)、深度波尔兹曼机(Deep Boltzmann Machine,DBM)、栈式自动编码器(Stacked Autoencoder)、生成对抗网络(Generative Adversarial Networks)等。

更多PHP相关技术文章,请访问PHP图文教程栏目进行学习!

相关专题

更多
Java 桌面应用开发(JavaFX 实战)
Java 桌面应用开发(JavaFX 实战)

本专题系统讲解 Java 在桌面应用开发领域的实战应用,重点围绕 JavaFX 框架,涵盖界面布局、控件使用、事件处理、FXML、样式美化(CSS)、多线程与UI响应优化,以及桌面应用的打包与发布。通过完整示例项目,帮助学习者掌握 使用 Java 构建现代化、跨平台桌面应用程序的核心能力。

37

2026.01.14

php与html混编教程大全
php与html混编教程大全

本专题整合了php和html混编相关教程,阅读专题下面的文章了解更多详细内容。

19

2026.01.13

PHP 高性能
PHP 高性能

本专题整合了PHP高性能相关教程大全,阅读专题下面的文章了解更多详细内容。

37

2026.01.13

MySQL数据库报错常见问题及解决方法大全
MySQL数据库报错常见问题及解决方法大全

本专题整合了MySQL数据库报错常见问题及解决方法,阅读专题下面的文章了解更多详细内容。

19

2026.01.13

PHP 文件上传
PHP 文件上传

本专题整合了PHP实现文件上传相关教程,阅读专题下面的文章了解更多详细内容。

16

2026.01.13

PHP缓存策略教程大全
PHP缓存策略教程大全

本专题整合了PHP缓存相关教程,阅读专题下面的文章了解更多详细内容。

6

2026.01.13

jQuery 正则表达式相关教程
jQuery 正则表达式相关教程

本专题整合了jQuery正则表达式相关教程大全,阅读专题下面的文章了解更多详细内容。

3

2026.01.13

交互式图表和动态图表教程汇总
交互式图表和动态图表教程汇总

本专题整合了交互式图表和动态图表的相关内容,阅读专题下面的文章了解更多详细内容。

45

2026.01.13

nginx配置文件详细教程
nginx配置文件详细教程

本专题整合了nginx配置文件相关教程详细汇总,阅读专题下面的文章了解更多详细内容。

9

2026.01.13

热门下载

更多
网站特效
/
网站源码
/
网站素材
/
前端模板

精品课程

更多
相关推荐
/
热门推荐
/
最新课程
麻省理工大佬Python课程
麻省理工大佬Python课程

共34课时 | 5.1万人学习

国外Web开发全栈课程全集
国外Web开发全栈课程全集

共12课时 | 1.0万人学习

关于我们 免责申明 举报中心 意见反馈 讲师合作 广告合作 最新更新
php中文网:公益在线php培训,帮助PHP学习者快速成长!
关注服务号 技术交流群
PHP中文网订阅号
每天精选资源文章推送

Copyright 2014-2026 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号