随机梯度下降(stochastic gradient descent,sgd)是一种常用于机器学习中参数优化的优化算法。在本文中,我们将介绍如何使用go语言(golang)实现sgd,并给出实现的例子。
SGD 算法的基本思想是在每一次迭代中,随机选取一些样本,并计算当前模型参数下这些样本的损失函数。然后在这些样本上计算梯度,并按照梯度的方向更新模型参数。这个过程会反复进行多次,直到满足停止条件。
具体来说,设 $f(x)$ 为损失函数,$x_i$ 为第 $i$ 个样本的特征向量,$y_i$ 为第 $i$ 个样本的输出,$w$ 为当前模型参数,SGD 的更新公式为:
$$w = w - \alpha \nabla f(x_i, y_i, w)$$
其中 $\alpha$ 为学习率(learning rate),$\nabla f(x_i, y_i, w)$ 表示在当前模型参数下计算第 $i$ 个样本的损失函数梯度。
立即学习“go语言免费学习笔记(深入)”;
在 Golang 中实现 SGD 算法需要用到的库有:gonum、gonum/mat 和 gonum/stat。其中 gonum 是一个数学库,提供了许多常用的数学函数,gonum/mat 是用来处理矩阵和向量的库,gonum/stat 则提供了统计学函数(如均值、标准差等)。
下面是一个简单的 Golang 实现:
package main
import (
"fmt"
"math/rand"
"gonum.org/v1/gonum/mat"
"gonum.org/v1/gonum/stat"
)
func main() {
// 生成一些随机的数据
x := mat.NewDense(100, 2, nil)
y := mat.NewVecDense(100, nil)
for i := 0; i < x.RawMatrix().Rows; i++ {
x.Set(i, 0, rand.Float64())
x.Set(i, 1, rand.Float64())
y.SetVec(i, float64(rand.Intn(2)))
}
// 初始化模型参数和学习率
w := mat.NewVecDense(2, nil)
alpha := 0.01
// 迭代更新模型参数
for i := 0; i < 1000; i++ {
// 随机选取一个样本
j := rand.Intn(x.RawMatrix().Rows)
xi := mat.NewVecDense(2, []float64{x.At(j, 0), x.At(j, 1)})
yi := y.AtVec(j)
// 计算损失函数梯度并更新模型参数
gradient := mat.NewVecDense(2, nil)
gradient.SubVec(xi, w)
gradient.ScaleVec(alpha*(yi-gradient.Dot(xi)), xi)
w.AddVec(w, gradient)
}
// 输出模型参数
fmt.Println(w.RawVector().Data)
}这个实现的数据集是一个 $100 \times 2$ 的矩阵,每一行代表一个样本,每个样本有两个特征。标签 $y$ 是一个 $100 \times 1$ 的向量,每个元素都是 0 或 1。代码中的迭代次数为 1000 次,学习率 $\alpha$ 为 0.01。
在每一次迭代中,随机选取一个样本,并在这个样本上计算损失函数梯度。梯度计算完成后,使用上面的公式更新模型参数。最后输出模型参数。
本文介绍了如何使用 Golang 实现 SGD 算法,并给出了一个简单的例子。在实际应用中,SGD 算法也有一些变体,如带动量的 SGD、AdaGrad、Adam 等。读者可以根据自己的需求选择使用哪种算法。
以上就是golang怎么实现sgd的详细内容,更多请关注php中文网其它相关文章!
每个人都需要一台速度更快、更稳定的 PC。随着时间的推移,垃圾文件、旧注册表数据和不必要的后台进程会占用资源并降低性能。幸运的是,许多工具可以让 Windows 保持平稳运行。
Copyright 2014-2025 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号