量子计算和人工智能都是变革性技术,人工智能很可能需要量子计算才能取得重大进展。人工智能虽然用经典计算机产生功能性应用,但受限于经典计算机的计算能力。量子计算可以为人工智能提供计算提升,使其能够解决更复杂的问题和AGI(通用人工智能)。
量子人工智能是使用量子计算来计算机器学习算法。得益于量子计算的计算优势,量子人工智能可以帮助实现经典计算机无法实现的结果。
量子力学是一种基于不同于日常生活中观察到的原理的通用模型。用量子计算来处理数据,需要建立数据的量子模型。混合量子经典模型对于量子计算的纠错和量子计算机的正确运行也是必要的。
尽管人工智能在过去十年中取得了长足的进步,但尚未克服技术限制。借助量子计算的独特特性,可以消除实现 AGI(通用人工智能)的障碍。量子计算可用于机器学习模型的快速训练和创建优化算法。量子计算提供的优化和稳定的人工智能可以在短时间内完成多年的分析,并引领技术进步。神经形态认知模型、自适应机器学习或不确定性推理是当今人工智能面临的一些基本挑战。量子人工智能是下一代人工智能最有可能的解决方案之一。
最近,谷歌与滑铁卢大学、 X和 大众汽车公司合作推出了TensorFlow Quantum(TFQ):一个用于量子机器学习的开源库 。TFQ 的目的是提供必要的工具来控制和模拟自然或人工量子系统。TFQ 是一套结合了量子建模和机器学习技术的工具的一个例子。
资料来源:谷歌
评估成本函数、梯度和更新参数的其他步骤是深度学习的经典步骤。这些步骤可确保为无监督任务创建有效模型。
研究人员对量子人工智能的近期现实目标是创建性能优于经典算法的量子算法并将其付诸实践。
尽管量子 AI 是一项不成熟的技术,但量子计算方面的改进增加了量子 AI 的潜力。然而,量子人工智能产业需要关键的里程碑才能成为更成熟的技术。这些里程碑可以概括为:
这些关键步骤将使量子人工智能能够进一步发展。(by Cem Dilmegani)
以上就是智能百科 | 2022 年量子人工智能深度指南的详细内容,更多请关注php中文网其它相关文章!
每个人都需要一台速度更快、更稳定的 PC。随着时间的推移,垃圾文件、旧注册表数据和不必要的后台进程会占用资源并降低性能。幸运的是,许多工具可以让 Windows 保持平稳运行。
Copyright 2014-2025 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号