0

0

这些技术,ChatGPT和它的潜在竞争者们都在用

王林

王林

发布时间:2023-04-12 13:13:03

|

1786人浏览过

|

来源于51CTO.COM

转载

随着 ChatGPT 的出现以及随之而来的广泛讨论,RLHF、SFT、IFT、CoT 等晦涩的缩略词出现在公众面前,这都归功于 ChatGPT 的成功。这些晦涩的缩略词是什么?为什么它们如此重要?本文作者查阅了所有关于这些主题的重要论文,进行了分类总结。

ChatGPT 并不是第一个基于语言模型(LM)的对话智能体,事实上,许多机构在 OpenAI 之前发布过语言模型对话智能体,包括 Meta BlenderBot、Google LaMDA、DeepMind 的 Sparrow 和 Anthropic Assistant。一些机构也宣布建立开源聊天机器人的计划,并公开了路线图(如 LAION 的 Open-Assistant)。肯定还有其它机构在做同样的工作,只是没有宣布。

下表根据上面提到的 AI 聊天机器人是否可公开访问、训练数据、模型架构和评估的详细信息,对它们进行了比较。ChatGPT 没有相关数据,这里使用的是 InstructGPT 的资料,它是 OpenAI 的一个微调模型,被认为是 ChatGPT 的基础。

图片

尽管在训练数据、模型和微调方面存在许多差异,但这些聊天机器人也存在一些共性 —— 指令遵循(instruction following),即根据用户的指令,给出响应。例如让 ChatGPT 写一首关于微调的诗。 

图片

从预测文本到遵循指令

通常而言,基础语言建模的目标不足以让模型高效地遵循用户的指示。模型创建者还使用指令微调(Instruction Fine-Tuning,IFT),它可以在多样化任务上对基本模型进行微调,还能应用在情感分析、文本分类、摘要等经典 NLP 任务。

IFT 主要由三个部分组成:指令、输入和输出。输入是可选的,有些任务只需要指令,如上面的 ChatGPT 示例。输入和输出构成实例(instance)。给定的指令可以有多个输入和输出。相关示例如下([Wang et al., ‘22])。

图片

IFT 的数据通常使用人类的指令和语言模型 bootstrapped 的指令集合。对于 bootstraping,LM 会在零样本的情况下根据 prompt,生成新的指令、输入和输出。在每一轮中,模型都会得到从人类编写和生成模型中选择的样本的 prompt。人类和模型贡献数据集的情况可以用频谱表示,如下图所示。

☞☞☞AI 智能聊天, 问答助手, AI 智能搜索, 免费无限量使用 DeepSeek R1 模型☜☜☜

图片

一种是纯模型生成的 IFT 数据集如 Unnatural Instructions,另一种是集社区努力、手动创建的指令如 Super natural Instructions。位于这两者之间,选用高质量种子数据集然后进行 bootstrap 如 Self-instruct。为 IFT 收集数据集的另一种方法是将现有高质量众包 NLP 数据集用于各种任务(包括 prompting),并使用统一的模式或不同的模板将这些数据集作为指令,相关工作包括 T0、Natural instructions 数据集、FLAN LM 和 OPT-IML。

安全遵循指令

LM 使用微调后的指令,可能并不总是生成有用安全的响应。这种行为的示例包括无效回应(托词),总是给出诸如「对不起,我不明白」之类的无效回答,或者对用户关于敏感话题的输入做出不安全的回应。

为了解决这种问题,模型开发人员使用监督式微调(Supervised Fine-tuning, SFT),在高质量的人类标记数据上微调基础语言模型,以实现有效和安全的响应。

SFT 和 IFT 紧密相连。指令调优可以看作是监督式微调的子集。在最近的文献中,SFT 阶段通常用于安全主题,而不是在 IFT 之后进行的指令特定主题。未来这种分类和描述会有更清晰的用例和方法。

图片

Demila数字内容交易系统
Demila数字内容交易系统

感谢使用Demila。Demila是一款由9秒社团原创的、面向数字内容及其服务的、优美的在线交易系统,她除了能为站长提供一个建站解决方案之外,还能为那些技术精湛的设计者、开发者以及资源拥有者们提供无数个拓展其作品和资源之价值的机会,从而使那些精益求精者的智慧和创意,无论是价格,还是价值,都达到应有的尺度。这是9秒社团Demila项目组的宗旨,也是Demila的使命。我们热切希望能有更多的人为Dem

下载

谷歌的 LaMDA 也是根据一组规则对带有安全注释的对话数据集微调。这些规则通常是由模型创建者预先定义和制定的,包含一系列广泛的主题,如有害、歧视和错误信息。

模型微调

另一方面,OpenAI 的 InstructGPT、DeepMind 的 Sparrow 和 Anthropic 的 ConstitutionalAI 均使用从人类反馈中强化学习(reinforcement learning from human feedback, RLHF)的技术。在 RLHF 中,模型响应基于人类反馈(如选择一个更好的答案)进行排序,然后用这些带注释的响应训练模型,以返回 RL 优化器的 scalar 奖励,最后通过强化学习训练对话智能体来模拟偏好模型。

思维链(Chain-of-thought, CoT)是指令演示的特殊情况,通过从对话智能体中引出逐步推理生成输出。用 CoT 进行微调的模型使用带有逐步推理的人类注释的指令数据集。如下示例所示,橙色标记代表指令,粉色标记代表输入和输出,蓝色标记代表 CoT 推理。

图片

用 CoT 来微调的模型在涉及常识、算术和符号推理的任务上表现得更好。CoT 进行微调也显示出对实现无害性非常有效(有时比 RLHF 做得更好),并且模型不会回避并产生「对不起,我无法回答这个问题」等回复。

图片

要点总结

本文要点总结如下:

1、 与预训练数据相比,只需要非常小的一部分数据来对指令进行微调。

2、 监督式微调使用人工标注使模型输出更安全和更有帮助。

3、 CoT 微调提高模型在逐步思考任务上的性能,并减少了它们在敏感话题上的无效响应或回避不答。

对话智能体的进一步工作思考

最后,作者对未来对话智能体的发展给出了自己的一些思考。

1、 RL 在从人类反馈中学习有多重要?可以通过 IFT 或 SFT 中的高质量数据训练获得与 RLHF 一样的性能吗?

2、 与在 LaMDA 中使用 SFT 相比,在 Sparrow 中使用 SFT+RLHF 的安全性如何?

3、 IFT、SFT、CoT 和 RLHF,需要怎样程度的预训练?tradeoff 是什么?应该使用的最好的基础模型是什么?

4、 文中介绍的许多模型都是经过精心设计,工程师们专门收集导致失败的模式,并根据已处理的问题改善未来的训练(prompts 和方法)。要如何系统地记录这些方法的效果并重现它们?

相关专题

更多
excel制作动态图表教程
excel制作动态图表教程

本专题整合了excel制作动态图表相关教程,阅读专题下面的文章了解更多详细教程。

20

2025.12.29

freeok看剧入口合集
freeok看剧入口合集

本专题整合了freeok看剧入口网址,阅读下面的文章了解更多网址。

65

2025.12.29

俄罗斯搜索引擎Yandex最新官方入口网址
俄罗斯搜索引擎Yandex最新官方入口网址

Yandex官方入口网址是https://yandex.com;用户可通过网页端直连或移动端浏览器直接访问,无需登录即可使用搜索、图片、新闻、地图等全部基础功能,并支持多语种检索与静态资源精准筛选。本专题为大家提供相关的文章、下载、课程内容,供大家免费下载体验。

197

2025.12.29

python中def的用法大全
python中def的用法大全

def关键字用于在Python中定义函数。其基本语法包括函数名、参数列表、文档字符串和返回值。使用def可以定义无参数、单参数、多参数、默认参数和可变参数的函数。本专题为大家提供相关的文章、下载、课程内容,供大家免费下载体验。

16

2025.12.29

python改成中文版教程大全
python改成中文版教程大全

Python界面可通过以下方法改为中文版:修改系统语言环境:更改系统语言为“中文(简体)”。使用 IDE 修改:在 PyCharm 等 IDE 中更改语言设置为“中文”。使用 IDLE 修改:在 IDLE 中修改语言为“Chinese”。本专题为大家提供相关的文章、下载、课程内容,供大家免费下载体验。

16

2025.12.29

C++的Top K问题怎么解决
C++的Top K问题怎么解决

TopK问题可通过优先队列、partial_sort和nth_element解决:优先队列维护大小为K的堆,适合流式数据;partial_sort对前K个元素排序,适用于需有序结果且K较小的场景;nth_element基于快速选择,平均时间复杂度O(n),效率最高但不保证前K内部有序。本专题为大家提供相关的文章、下载、课程内容,供大家免费下载体验。

12

2025.12.29

php8.4实现接口限流的教程
php8.4实现接口限流的教程

PHP8.4本身不内置限流功能,需借助Redis(令牌桶)或Swoole(漏桶)实现;文件锁因I/O瓶颈、无跨机共享、秒级精度等缺陷不适用高并发场景。本专题为大家提供相关的文章、下载、课程内容,供大家免费下载体验。

134

2025.12.29

抖音网页版入口在哪(最新版)
抖音网页版入口在哪(最新版)

抖音网页版可通过官网https://www.douyin.com进入,打开浏览器输入网址后,可选择扫码或账号登录,登录后同步移动端数据,未登录仅可浏览部分推荐内容。本专题为大家提供相关的文章、下载、课程内容,供大家免费下载体验。

63

2025.12.29

快手直播回放在哪看教程
快手直播回放在哪看教程

快手直播回放需主播开启功能才可观看,主要通过三种路径查看:一是从“我”主页进入“关注”标签再进主播主页的“直播”分类;二是通过“历史记录”中的“直播”标签页找回;三是进入“个人信息查阅与下载”里的“直播回放”选项。本专题为大家提供相关的文章、下载、课程内容,供大家免费下载体验。

18

2025.12.29

热门下载

更多
网站特效
/
网站源码
/
网站素材
/
前端模板

精品课程

更多
相关推荐
/
热门推荐
/
最新课程
10分钟--Midjourney创作自己的漫画
10分钟--Midjourney创作自己的漫画

共1课时 | 0.1万人学习

Midjourney 关键词系列整合
Midjourney 关键词系列整合

共13课时 | 0.9万人学习

AI绘画教程
AI绘画教程

共2课时 | 0.2万人学习

关于我们 免责申明 举报中心 意见反馈 讲师合作 广告合作 最新更新
php中文网:公益在线php培训,帮助PHP学习者快速成长!
关注服务号 技术交流群
PHP中文网订阅号
每天精选资源文章推送

Copyright 2014-2025 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号