0

0

人工智能的未来:通用人工智能

王林

王林

发布时间:2023-04-14 14:28:03

|

1778人浏览过

|

来源于51CTO.COM

转载

☞☞☞AI 智能聊天, 问答助手, AI 智能搜索, 免费无限量使用 DeepSeek R1 模型☜☜☜

人工智能的未来:通用人工智能

为了获得对人工智能的真正理解,研究人员应该把注意力转移到开发一种基本的、潜在的AGI技术上,这种技术可以复制人类对环境的理解。

谷歌、微软和 Facebook 等行业巨头,Elon Musk 的 OpenAI 等研究实验室,甚至 SingularityNET 等平台都在押注通用人工智能(AGI)——智能代理理解或学习人类无法完成的任何智力任务的能力,这代表了人工智能技术的未来。

然而,有点令人惊讶的是,这些公司都没有专注于开发一种基本的、底层的 AGI 技术来复制人类的上下文理解。这可能解释了为什么这些公司正在进行的研究完全依赖于具有不同程度特异性并依赖于当今人工智能算法的智能模型。

不幸的是,这种依赖意味着,人工智能充其量只能表现出智能。无论他们的能力多么令人印象深刻,他们仍然遵循包含许多变量的预定脚本。因此,即使是GPT3或 Watson 等大型、高度复杂的程序也只能表现出理解能力。实际上,他们不理解文字和图像代表了物理宇宙中存在并相互作用的物理事物。时间的概念或原因产生影响的想法对他们来说是完全陌生的。

这并不是要剥夺今天人工智能的能力。例如,谷歌能够以令人难以置信的速度搜索大量信息,以提供用户想要的结果(至少大多数时候是这样)。Siri等个人助理可以预订餐厅、查找和阅读电子邮件,并实时给出指示。这个列表还在不断扩展和改进中。

但无论这些程序多么复杂,它们仍在寻找输入并做出完全依赖于其核心数据集的特定输出响应。如果不相信,请向客户服务机器人询问一个“计划外”的问题,该机器人可能会生成一个毫无意义的响应或根本没有响应。    

总之,谷歌、Siri或任何其他目前的AI例子都缺乏真正的、常识性的理解,这最终将阻止它们向人工通用智能(Artificial General Intelligence)发展。原因可以追溯到过去50年大多数人工智能发展的主要假设,即如果困难的问题能够解决,简单的智能问题就会得到解决。这一假设可以用莫拉维克悖论(Moravec’s Paradox)来形容,它认为,让计算机在智力测试中表现出成人水平的表现相对容易,但在感知和行动能力方面,让它们具备一岁婴儿的技能却很难。

人工智能研究人员的假设也是错误的,他们认为,如果构建了足够多的狭义人工智能应用,它们最终将共同成长为通用智能。与儿童可以毫不费力地整合视觉、语言和其他感官的方式不同,狭义的AI应用无法以一种通用的方式存储信息,从而允许信息被共享并随后被其他AI应用使用。

最后,研究人员错误地认为,如果可以建立一个足够大的机器学习系统和足够的计算机能力,它就会自发地表现出通用智能。这也被证明是错误的。正如试图获取特定领域知识的专家系统无法创建足够的案例和示例数据来克服潜在的缺乏理解一样,人工智能系统也无法处理“非计划内的”请求,无论其规模有多大。 

通用人工智能基础知识

为了获得真正的人工智能理解,研究人员应该将注意力转移到开发一种基本的、潜在的 AGI 技术,以复制人类对上下文的理解。例如,考虑一个 3 岁儿童玩积木时表现出的情境意识和情境理解。3 岁的孩子明白积木存在于三维世界中,具有重量、形状和颜色等物理特性,如果堆叠得太高会掉下来。孩子还理解因果关系和时间流逝的概念,因为积木在首先被堆叠之前不能被击倒。

3 岁也可以变成 4 岁,然后是 5 岁,最后是 10 岁,以此类推。简而言之,3 岁儿童的能力与生俱来,包括成长为功能齐全、普遍聪明的成年人的能力。对于今天的人工智能来说,这样的增长是不可能的。不管它多么复杂,今天的人工智能仍然完全不知道它在其环境中的存在。它不知道现在采取的行动会影响未来的行动。

虽然认为一个从未经历过自身训练数据之外的任何事情的人工智能系统能够理解现实世界的概念是不现实的,但为人工智能添加移动感觉舱可以让人工实体从现实环境中学习,并展示出对现实中物理对象、因果关系和时间流逝的基本理解。就像那个3岁的孩子一样,这个配备了感觉舱的人工实体能够直接学习如何堆叠积木、移动物体、随着时间的推移执行一系列的行动,并从这些行动的后果中学习。

通过视觉、听觉、触觉、操纵器等,人工实体可以学习以纯文本或纯图像系统根本不可能的方式进行理解。如前所述,无论它们的数据集有多大和多变,这样的系统根本无法理解和学习。一旦实体获得了这种理解和学习的能力,甚至有可能移除感觉荚。

虽然在这一点上,我们无法量化需要多少数据来表示真正的理解,但我们可以推测,大脑中一定有一个合理的比例与理解有关。毕竟,人类是在已经经历和学习过的一切事物的背景下解释一切事物的。作为成年人,我们用生命最初几年学到的知识来解释一切。考虑到这一点,似乎只有AI社区认识到这一事实,并采取必要步骤建立基本的理解基础,真正的人工通用智能才有可能完全出现。

相关专题

更多
excel制作动态图表教程
excel制作动态图表教程

本专题整合了excel制作动态图表相关教程,阅读专题下面的文章了解更多详细教程。

20

2025.12.29

freeok看剧入口合集
freeok看剧入口合集

本专题整合了freeok看剧入口网址,阅读下面的文章了解更多网址。

65

2025.12.29

俄罗斯搜索引擎Yandex最新官方入口网址
俄罗斯搜索引擎Yandex最新官方入口网址

Yandex官方入口网址是https://yandex.com;用户可通过网页端直连或移动端浏览器直接访问,无需登录即可使用搜索、图片、新闻、地图等全部基础功能,并支持多语种检索与静态资源精准筛选。本专题为大家提供相关的文章、下载、课程内容,供大家免费下载体验。

197

2025.12.29

python中def的用法大全
python中def的用法大全

def关键字用于在Python中定义函数。其基本语法包括函数名、参数列表、文档字符串和返回值。使用def可以定义无参数、单参数、多参数、默认参数和可变参数的函数。本专题为大家提供相关的文章、下载、课程内容,供大家免费下载体验。

16

2025.12.29

python改成中文版教程大全
python改成中文版教程大全

Python界面可通过以下方法改为中文版:修改系统语言环境:更改系统语言为“中文(简体)”。使用 IDE 修改:在 PyCharm 等 IDE 中更改语言设置为“中文”。使用 IDLE 修改:在 IDLE 中修改语言为“Chinese”。本专题为大家提供相关的文章、下载、课程内容,供大家免费下载体验。

16

2025.12.29

C++的Top K问题怎么解决
C++的Top K问题怎么解决

TopK问题可通过优先队列、partial_sort和nth_element解决:优先队列维护大小为K的堆,适合流式数据;partial_sort对前K个元素排序,适用于需有序结果且K较小的场景;nth_element基于快速选择,平均时间复杂度O(n),效率最高但不保证前K内部有序。本专题为大家提供相关的文章、下载、课程内容,供大家免费下载体验。

12

2025.12.29

php8.4实现接口限流的教程
php8.4实现接口限流的教程

PHP8.4本身不内置限流功能,需借助Redis(令牌桶)或Swoole(漏桶)实现;文件锁因I/O瓶颈、无跨机共享、秒级精度等缺陷不适用高并发场景。本专题为大家提供相关的文章、下载、课程内容,供大家免费下载体验。

134

2025.12.29

抖音网页版入口在哪(最新版)
抖音网页版入口在哪(最新版)

抖音网页版可通过官网https://www.douyin.com进入,打开浏览器输入网址后,可选择扫码或账号登录,登录后同步移动端数据,未登录仅可浏览部分推荐内容。本专题为大家提供相关的文章、下载、课程内容,供大家免费下载体验。

63

2025.12.29

快手直播回放在哪看教程
快手直播回放在哪看教程

快手直播回放需主播开启功能才可观看,主要通过三种路径查看:一是从“我”主页进入“关注”标签再进主播主页的“直播”分类;二是通过“历史记录”中的“直播”标签页找回;三是进入“个人信息查阅与下载”里的“直播回放”选项。本专题为大家提供相关的文章、下载、课程内容,供大家免费下载体验。

18

2025.12.29

热门下载

更多
网站特效
/
网站源码
/
网站素材
/
前端模板

精品课程

更多
相关推荐
/
热门推荐
/
最新课程
XML教程
XML教程

共142课时 | 5.3万人学习

【web前端】Node.js快速入门
【web前端】Node.js快速入门

共16课时 | 1.9万人学习

ECMAScript6 / ES6---十天技能课堂
ECMAScript6 / ES6---十天技能课堂

共25课时 | 1.9万人学习

关于我们 免责申明 举报中心 意见反馈 讲师合作 广告合作 最新更新
php中文网:公益在线php培训,帮助PHP学习者快速成长!
关注服务号 技术交流群
PHP中文网订阅号
每天精选资源文章推送

Copyright 2014-2025 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号