随着企业级应用程序架构的逐渐复杂化,消息传输变成了一个至关重要的组成部分。这时kafka便崭露头角。kafka是一款高效可靠的分布式消息队列,它支持消息的发布和订阅,是现代化的企业级消息系统,且拥有非常高的吞吐量和低延迟。在kafka的api中,尽管官方提供了多种语言的客户端,但近年来golang的应用越来越广泛,所以本文以golang作为实现语言,讲解如何用golang实现kafka。
一、依赖
在开始之前,需要先下载所需的依赖:
- sarama:Golang Kafka客户端库
- pkg/errors:对Go标准库的错误包进行封装
具体使用方法如下:
go get github.com/Shopify/sarama
go get github.com/pkg/errors
立即学习“go语言免费学习笔记(深入)”;
二、创建一个生产者
在介绍Kafka的API之前,需要先创建一个生产者实例。生产者的代码如下所示:
package main
import (
"fmt"
"time"
"github.com/pkg/errors"
"github.com/Shopify/sarama"
)
func main() {
config := sarama.NewConfig()
config.Producer.Partitioner = sarama.NewRandomPartitioner
config.Producer.RequiredAcks = sarama.WaitForAll
config.Producer.Return.Successes = true
producer, err := sarama.NewSyncProducer([]string{"localhost:9092"}, config)
if err != nil {
panic(errors.Wrap(err, "failed to create producer"))
}
defer producer.Close()
for i := 0; i < 10; i++ {
message := &sarama.ProducerMessage{
Topic: "test_topic",
Value: sarama.StringEncoder(fmt.Sprintf("test message %d", i)),
}
partition, offset, err := producer.SendMessage(message)
if err != nil {
fmt.Println(errors.Wrapf(err, "failed to send message: %s", message))
} else {
fmt.Printf("message sent to partition %d at offset %d
", partition, offset)
}
time.Sleep(500 * time.Millisecond) // 延迟发送
}
}
代码中主要做了以下几件事情:
- 配置生产者:设置生产者的配置,并指定分区方式为随机分区,要求等待所有ISR节点都确认消息后再返回,以及在发送成功后返回Partition和Offset。
- 创建生产者:用指定的broker地址和配置创建一个生产者实例。
- 发送消息:创建一个含有消息主题和内容的消息,并进行发送。
- 输出结果:打印结果,记录消息分区和偏移量。
三、创建一个消费者
在其次,需要创建一个消费者实例。消费者的代码如下所示:
package main
import (
"context"
"fmt"
"os"
"os/signal"
"github.com/Shopify/sarama"
"github.com/pkg/errors"
)
func main() {
config := sarama.NewConfig()
config.Consumer.Return.Errors = true
consumer, err := sarama.NewConsumer([]string{"localhost:9092"}, config)
if err != nil {
panic(errors.Wrap(err, "failed to create consumer"))
}
defer consumer.Close()
signals := make(chan os.Signal, 1)
signal.Notify(signals, os.Interrupt)
partitions, err := consumer.Partitions("test_topic")
if err != nil {
panic(errors.Wrapf(err, "failed to read partitions for topic: test_topic"))
}
ctx, cancel := context.WithCancel(context.Background())
for _, partition := range partitions {
go func(partition int32) {
partitionConsumer, err := consumer.ConsumePartition("test_topic", partition, sarama.OffsetOldest)
if err != nil {
fmt.Printf("failed to create partition consumer for partition %d: %s
", partition, err)
return
}
defer partitionConsumer.Close()
for {
select {
case msg := <-partitionConsumer.Messages():
fmt.Printf("Consumed message from partition %d at offset %d: %s
", msg.Partition, msg.Offset, msg.Value)
case <-signals:
cancel()
return
case err := <-partitionConsumer.Errors():
fmt.Printf("Consumed error from partition %d: %s
", partition, err)
case <-ctx.Done():
return
}
}
}(partition)
}
<-signals
fmt.Println("Shutting down consumer")
}
代码中主要做了以下几件事情:
- 配置消费者:配置消费者并设置错误返回开关。
- 创建消费者:根据指定的broker地址和配置创建一个消费者实例。
- 获取分区:获取指定topic的分区。
- 进行消费:对每个分区开启一个goroutine进行单独的消费。
- 输出结果:打印出消费到的消息。
四、总结
以上,我们使用Golang实现了Kafka的生产者和消费者部分,作为实现分布式系统的重要组成部分之一,Kafka可以解决消息系统在高并发以及分布式环境下存在的问题,并且Kafka也有良好的支持文档以及稳定的社区,在实际的开发中应用起来毫无压力。











