场景一:数据不需要频繁的写入mysql
使用 navicat 工具的导入向导功能。这个软件可以支持多种文件格式,自动根据文件字段建立表格并方便地插入数据,速度也非常快。


场景二:数据是增量的,需要自动化并频繁写入mysql
测试数据:csv 格式 ,大约 1200万行
import pandas as pd
data = pd.read_csv('./tianchi_mobile_recommend_train_user.csv')
data.shape打印结果
立即学习“Python免费学习笔记(深入)”;

方式一
python + pymysql 库
安装 pymysql 命令
pip install pymysql
代码实现:
import pymysql
# 数据库连接信息
conn = pymysql.connect(
host='127.0.0.1',
user='root',
passwd='wangyuqing',
db='test01',
port = 3306,
charset="utf8")
# 分块处理
big_size = 100000
# 分块遍历写入到 mysql
with pd.read_csv('./tianchi_mobile_recommend_train_user.csv',chunksize=big_size) as reader:
for df in reader:
datas = []
print('处理:',len(df))
# print(df)
for i ,j in df.iterrows():
data = (j['user_id'],j['item_id'],j['behavior_type'],
j['item_category'],j['time'])
datas.append(data)
_values = ",".join(['%s', ] * 5)
sql = """insert into users(user_id,item_id,behavior_type
,item_category,time) values(%s)""" % _values
cursor = conn.cursor()
cursor.executemany(sql,datas)
conn.commit()
# 关闭服务
conn.close()
cursor.close()
print('存入成功!')
方式二
pandas + sqlalchemy:pandas需要引入sqlalchemy来支持sql,在sqlalchemy的支持下,它可以实现所有常见数据库类型的查询、更新等操作。
代码实现:
from sqlalchemy import create_engine
engine = create_engine('mysql+pymysql://root:wangyuqing@localhost:3306/test01')
data = pd.read_csv('./tianchi_mobile_recommend_train_user.csv')
data.to_sql('user02',engine,chunksize=100000,index=None)
print('存入成功!')











