0

0

多模态可控图片生成统一模型来了,模型参数、推理代码全部开源

WBOY

WBOY

发布时间:2023-06-06 17:12:04

|

1477人浏览过

|

来源于51CTO.COM

转载

☞☞☞AI 智能聊天, 问答助手, AI 智能搜索, 免费无限量使用 DeepSeek R1 模型☜☜☜

多模态可控图片生成统一模型来了,模型参数、推理代码全部开源


  • 论文地址:https://arxiv.org/abs/2305.11147
  • 代码地址:https://github.com/salesforce/UniControl
  • 项目主页:https://shorturl.at/lmMX6

引言:Stable Diffusion 表现出了强大的视觉生成能力。然而,它们在生成具有空间、结构或几何控制的图像方面常常表现不足。ControlNet [1] 和 T2I-adpater [2] 等工作实现针对不同模态的可控图片生成,但能够在单一统一的模型中适应各种视觉条件,仍然是一个未解决的挑战。UniControl 在单一的框架内合并了各种可控的条件到图像(C2I)任务。为了使 UniControl 有能力处理多样的视觉条件,作者引入了一个任务感知的 HyperNet 来调节下游的条件扩散模型,使其能够同时适应不同的 C2I 任务。UniControl 在九个不同的 C2I 任务上进行训练,展示了强大的视觉生成能力和 zero-shot 泛化能力。作者已开源模型参数和推理代码,数据集和训练代码也将尽快开源,欢迎大家交流使用。

多模态可控图片生成统一模型来了,模型参数、推理代码全部开源

图 1: UniControl 模型由多个预训练任务和 zero-shot 任务组成

动机:现有的可控图片生成模型都是针对单一的模态进行设计,然而 Taskonomy [3] 等工作证明不同的视觉模态之间共享特征和信息,因此本文认为统一的多模态模型具有巨大的潜力。

解决:本文提出了 MOE-style Adapter 和 Task-aware HyperNet 来实现 UniControl 中的多模态条件生成能力。并且作者建立了一个新的数据集 MultiGen-20M,包含 9 大任务,超过两千万个 image-condition-prompt 三元组,图片尺寸≥512。

优点: 1) 更紧凑的模型 (1.4B #params, 5.78GB checkpoint),更少的参数实现多个 tasks。2) 更强大的视觉生成能力和控制的准确性。3) 在从未见过的模态上的 zero-shot 泛化能力。

1.介绍

生成式基础模型正在改变人工智能在自然语言处理、计算机视觉、音频处理和机器人控制等领域的交互方式。在自然语言处理中,像 InstructGPT 或 GPT-4 这样的生成式基础模型在各种任务上都表现优异,这种多任务处理能力是最吸引人的特性之一。此外,它们还可以进行 zero-shot 或 few-shot 的学习来处理未见过的任务。

然而,在视觉领域的生成模型中,这种多任务处理能力并不突出。虽然文本描述提供了一种灵活的方式来控制生成的图像的内容,但它们在提供像素级的空间、结构或几何控制方面往往不足。最近热门研究例如 ControlNet,T2I-adapter 可以增强 Stable Diffusion Model (SDM) 来实现精准的控制。然而,与可以由 CLIP 这样的统一模块处理的语言提示不同,每个 ControlNet 模型只能处理其训练过的特定模态。

为了克服先前工作的限制,本文提出了 UniControl,一个能同时处理语言和各种视觉条件的统一扩散模型。UniControl 的统一设计可以享受到提高训练和推理效率以及增强可控生成的优点。另一方面,UniControl 从不同视觉条件之间的固有联系中获益,来增强每个条件的生成效果。

UniControl 的统一可控生成能力依赖于两个部分,一个是 "MOE-style Adapter",另一个是 "Task-aware HyperNet"。MOE-style Adapter 有 70K 左右的参数,可以从各种模态中学习低级特征图,Task-aware HyperNet 可以将任务指令作为自然语言提示输入,并输出任务 embedding 嵌入下游的网络中,来调制下游模型的参数来适应不同模态的输入。

该研究对 UniControl 进行预训练,以获得多任务和 zero-shot 学习的能力,包括五个类别的九个不同任务:边缘 (Canny, HED, Sketch),区域映射 (Segmentation, Object Bound Box),骨架 (Human Skeleton),几何图 (Depth, Normal Surface) 和图片编辑 (Image Outpainting)。然后,该研究在 NVIDIA A100 硬件上训练 UniControl 超过 5000 个 GPU 小时 (当前新模型仍在继续训练)。并且 UniControl 展现出了对新任务的 zero-shot 适应能力。

该研究的贡献可以概括如下:

  • 该研究提出了 UniControl,一个能处理各种视觉条件的统一模型 (1.4B #params, 5.78GB checkpoint),用于可控的视觉生成。
  • 该研究收集了一个新的多条件视觉生成数据集,包含超过 2000 万个图像 - 文本 - 条件三元组,涵盖五个类别的九个不同任务。
  • 该研究进行了实验,证明了统一模型 UniControl 由于学习了不同视觉条件之间的内在关系,超过了每个单任务的受控图像生成。
  • UniControl 表现出了以 zero-shot 方式适应未见过的任务的能力,展现了其在开放环境中广泛使用的可能性和潜力。

2. 模型设计

多模态可控图片生成统一模型来了,模型参数、推理代码全部开源

图 2: 模型结构。为了适应多个任务,该研究设计了 MOE-style Adapter,每个任务大约有 70K 个参数,以及一个任务感知 Task-aware HyperNet(约 12M 参数)来调制 7 个零卷积层。这个结构允许在一个单一的模型中实现多任务功能,既保证了多任务的多样性,也保留了底层的参数共享。相比于等效的堆叠的单任务模型(每个模型大约有 1.4B 参数),显著地减少了模型的大小。

UniControl 模型设计确保了两个性质:

1) 克服来自不同模态的低级特征之间的不对齐。这有助于 UniControl 从所有任务中学习必要的和独特的信息。例如,当模型将分割图作为视觉条件时,可能会忽略 3D 信息。

2) 能够跨任务学习元知识。这使得模型能够理解任务之间的共享知识以及它们之间的差异。

为了提供这些属性,模型引入了两个新颖的模块:MOE-style Adapter 和 Task-aware HyperNet。

MOE-style Adapter 是一组卷积模块,每个 Adapter 对应一个单独的模态,灵感来自专家混合模型(MOE),用作 UniControl 捕获各种低级视觉条件的特征。此适配器模块具有约 70K 的参数,计算效率极高。此后视觉特征将被送入统一的网络中处理。

Task-aware HyperNet 则是通过任务指令条件对 ControlNet 的零卷积模块进行调节。HyperNet 首先将任务指令投影为 task embedding,然后研究者将 task embedding 注入到 ControlNet 的零卷积层中。在这里 task embedding 和零卷积层的卷积核矩阵尺寸是对应的。类似 StyleGAN [4],该研究直接将两者相乘来调制卷积参数,调制后的卷积参数作为最终的卷积参数。因此每个 task 的调制后零卷积参数是不一样的,这里保证了模型对于每个模态的适应能力,除此之外,所有的权重是共享的。

3. 模型训练

不同于 SDM 或 ControlNet,这些模型的图像生成条件是单一的语言提示,或如 canny 这样的单一类型的视觉条件。UniControl 需要处理来自不同任务的各种视觉条件,以及语言提示。因此 UniControl 的输入包含四部分: noise, text prompt, visual condition, task instruction。其中 task instruction 可以自然的根据 visual condition 的模态得到。

多模态可控图片生成统一模型来了,模型参数、推理代码全部开源

有了这样生成的训练配对,该研究采用 DDPM [5] 对模型进行训练。

4. 实验结果

多模态可控图片生成统一模型来了,模型参数、推理代码全部开源

图 6: 测试集视觉对比结果。测试数据来自于 MSCOCO [6] 和 Laion [7]

与官方或该研究复现的 ControlNet 对比结果如图 6 所示,更多结果请参考论文。

5.Zero-shot Tasks 泛化

模型在以下两个场景中测试 zero-shot 能力:

混合任务泛化:该研究考虑两种不同的视觉条件作为 UniControl 的输入,一个是分割图和人类骨骼的混合,并在文本提示中添加特定关键词 "背景" 和 "前景"。此外,该研究将混合任务指令重写为结合的两个任务的指令混合,例如 "分割图和人类骨骼到图像"。

新任务泛化:UniControl 需要在新的未见过的视觉条件上生成可控制的图像。为了实现这一点,基于未见过的和见过的预训练任务之间的关系估计任务权重至关重要。任务权重可以通过手动分配或计算嵌入空间中的任务指令的相似度得分来估计。MOE-style Adapter 可以与估计的任务权重线性组装,以从新的未见过的视觉条件中提取浅层特征。

可视化的结果如图 7 所示,更多结果请参考论文。

多模态可控图片生成统一模型来了,模型参数、推理代码全部开源

图 7: UniControl 在 Zero-shot tasks 上的可视化结果

6.总结

总的来说,UniControl 模型通过其控制的多样性,为可控视觉生成提供了一个新的基础模型。这种模型能够为实现图像生成任务的更高水平的自主性和人类控制能力提供可能。该研究期待和更多的研究者讨论和合作,以进一步推动这一领域的发展。

更多视觉效果

多模态可控图片生成统一模型来了,模型参数、推理代码全部开源

多模态可控图片生成统一模型来了,模型参数、推理代码全部开源

多模态可控图片生成统一模型来了,模型参数、推理代码全部开源

多模态可控图片生成统一模型来了,模型参数、推理代码全部开源

多模态可控图片生成统一模型来了,模型参数、推理代码全部开源

多模态可控图片生成统一模型来了,模型参数、推理代码全部开源

多模态可控图片生成统一模型来了,模型参数、推理代码全部开源

多模态可控图片生成统一模型来了,模型参数、推理代码全部开源

多模态可控图片生成统一模型来了,模型参数、推理代码全部开源

多模态可控图片生成统一模型来了,模型参数、推理代码全部开源

多模态可控图片生成统一模型来了,模型参数、推理代码全部开源


魔法映像企业网站管理系统
魔法映像企业网站管理系统

技术上面应用了三层结构,AJAX框架,URL重写等基础的开发。并用了动软的代码生成器及数据访问类,加进了一些自己用到的小功能,算是整理了一些自己的操作类。系统设计上面说不出用什么模式,大体设计是后台分两级分类,设置好一级之后,再设置二级并选择栏目类型,如内容,列表,上传文件,新窗口等。这样就可以生成无限多个二级分类,也就是网站栏目。对于扩展性来说,如果有新的需求可以直接加一个栏目类型并新加功能操作

下载

相关专题

更多
Golang gRPC 服务开发与Protobuf实战
Golang gRPC 服务开发与Protobuf实战

本专题系统讲解 Golang 在 gRPC 服务开发中的完整实践,涵盖 Protobuf 定义与代码生成、gRPC 服务端与客户端实现、流式 RPC(Unary/Server/Client/Bidirectional)、错误处理、拦截器、中间件以及与 HTTP/REST 的对接方案。通过实际案例,帮助学习者掌握 使用 Go 构建高性能、强类型、可扩展的 RPC 服务体系,适用于微服务与内部系统通信场景。

8

2026.01.15

公务员递补名单公布时间 公务员递补要求
公务员递补名单公布时间 公务员递补要求

公务员递补名单公布时间不固定,通常在面试前,由招录单位(如国家知识产权局、海关等)发布,依据是原入围考生放弃资格,会按笔试成绩从高到低递补,递补考生需按公告要求限时确认并提交材料,及时参加面试/体检等后续环节。要求核心是按招录单位公告及时响应、提交材料(确认书、资格复审材料)并准时参加面试。

44

2026.01.15

公务员调剂条件 2026调剂公告时间
公务员调剂条件 2026调剂公告时间

(一)符合拟调剂职位所要求的资格条件。 (二)公共科目笔试成绩同时达到拟调剂职位和原报考职位的合格分数线,且考试类别相同。 拟调剂职位设置了专业科目笔试条件的,专业科目笔试成绩还须同时达到合格分数线,且考试类别相同。 (三)未进入原报考职位面试人员名单。

58

2026.01.15

国考成绩查询入口 国考分数公布时间2026
国考成绩查询入口 国考分数公布时间2026

笔试成绩查询入口已开通,考生可登录国家公务员局中央机关及其直属机构2026年度考试录用公务员专题网站http://bm.scs.gov.cn/pp/gkweb/core/web/ui/business/examResult/written_result.html,查询笔试成绩和合格分数线,点击“笔试成绩查询”按钮,凭借身份证及准考证进行查询。

11

2026.01.15

Java 桌面应用开发(JavaFX 实战)
Java 桌面应用开发(JavaFX 实战)

本专题系统讲解 Java 在桌面应用开发领域的实战应用,重点围绕 JavaFX 框架,涵盖界面布局、控件使用、事件处理、FXML、样式美化(CSS)、多线程与UI响应优化,以及桌面应用的打包与发布。通过完整示例项目,帮助学习者掌握 使用 Java 构建现代化、跨平台桌面应用程序的核心能力。

65

2026.01.14

php与html混编教程大全
php与html混编教程大全

本专题整合了php和html混编相关教程,阅读专题下面的文章了解更多详细内容。

36

2026.01.13

PHP 高性能
PHP 高性能

本专题整合了PHP高性能相关教程大全,阅读专题下面的文章了解更多详细内容。

75

2026.01.13

MySQL数据库报错常见问题及解决方法大全
MySQL数据库报错常见问题及解决方法大全

本专题整合了MySQL数据库报错常见问题及解决方法,阅读专题下面的文章了解更多详细内容。

21

2026.01.13

PHP 文件上传
PHP 文件上传

本专题整合了PHP实现文件上传相关教程,阅读专题下面的文章了解更多详细内容。

35

2026.01.13

热门下载

更多
网站特效
/
网站源码
/
网站素材
/
前端模板

精品课程

更多
相关推荐
/
热门推荐
/
最新课程
Django 教程
Django 教程

共28课时 | 3.1万人学习

Go 教程
Go 教程

共32课时 | 3.7万人学习

TypeScript 教程
TypeScript 教程

共19课时 | 2.2万人学习

关于我们 免责申明 举报中心 意见反馈 讲师合作 广告合作 最新更新
php中文网:公益在线php培训,帮助PHP学习者快速成长!
关注服务号 技术交流群
PHP中文网订阅号
每天精选资源文章推送

Copyright 2014-2026 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号