0

0

Python中的残差分析技巧

PHPz

PHPz

发布时间:2023-06-10 08:52:43

|

3646人浏览过

|

来源于php中文网

原创

python是一种广泛使用的编程语言,其强大的数据分析和可视化功能使其成为数据科学家和机器学习工程师的首选工具之一。在这些应用中,残差分析是一种常见的技术,用于评估模型的准确性和识别任何模型偏差。在本文中,我们将介绍python中使用残差分析技巧的几种方法。

  1. 理解残差

在介绍Python中的残差分析技巧之前,让我们先了解什么是残差。在统计学中,残差是实际观测值与预测值之间的差异或误差。在建立任何模型后,我们可以计算每个观测值的残差,这有助于我们评估模型是否可以准确地预测未来的结果。

在Python中,我们可以使用Pandas和NumPy等库来计算残差。参考以下代码:

import pandas as pd
import numpy as np

# 创建数据集
y_true = pd.Series([1, 2, 3, 4, 5])
y_pred = pd.Series([1.2, 2.1, 2.8, 3.7, 4.5])

# 计算残差
residuals = y_true - y_pred
print(residuals)

以上代码创建了两个Pandas Series对象,分别表示真实值和预测值。然后通过相减计算它们的残差,并将其打印出来。

  1. 残差散点图

残差散点图是一种常用的残差分析工具,用于可视化模型的误差分布。它显示每个观测值的残差值与该观测值的预测值之间的关系。

立即学习Python免费学习笔记(深入)”;

在Python中,我们可以使用Matplotlib库中的scatter()函数创建散点图。参考以下代码:

import matplotlib.pyplot as plt

# 绘制残差散点图
plt.scatter(y_pred, residuals)
plt.title('Residual plot')
plt.ylabel('Residuals')
plt.xlabel('Fitted values')
plt.axhline(y=0, color='r', linestyle='-')
plt.show()

以上代码使用scatter()函数创建了散点图。横轴表示预测值,纵轴表示残差。其中, axhline()函数用于在图中绘制一条水平线,以帮助我们判断预测值和残差之间的分布是否随机。如果残差值在0附近随机分布,则该模型可以视为是准确的。

  1. 残差直方图

除了散点图外,残差直方图也是一种有效的残差分析工具,用于评估模型误差分布是否正态分布。在正态分布的情况下,残差值应该随机分布在0附近,因此我们可以使用直方图来显示我们的残差分布情况。

问小白
问小白

免费使用DeepSeek满血版

下载

在Python中,我们可以使用Matplotlib库中的hist()函数创建直方图。参考以下代码:

# 绘制残差直方图
plt.hist(residuals, bins=10)
plt.title('Residuals distribution')
plt.xlabel('Residuals')
plt.ylabel('Frequency')
plt.show()

以上代码使用hist()函数绘制直方图,并设置了相关的标签和标题。在这里,我们通过设置bins参数来调整横轴的粒度,以便更好地显示残差的分布情况。

  1. Q-Q图

Q-Q图是一种用于检验我们的残差是否符合正态分布的工具。它通过比较样本数据和标准正态分布之间的分位数来构建。如果残差符合正态分布,则在Q-Q图中,数据点应当在一条直线上。如果数据点偏离该直线,则我们可以认为残差不符合正态分布。

在Python中,我们可以使用Scipy库中的probplot()函数来绘制Q-Q图。参考以下代码:

from scipy.stats import probplot

# 绘制Q-Q图
probplot(residuals, dist='norm', plot=plt)
plt.title('Q-Q plot')
plt.show()

以上代码使用probplot()函数创建Q-Q图,并设置了dist参数为'norm',表示使用标准正态分布作为比较基准。如果数据点偏离直线,则我们可以通过检查绘制的图形来确认残差是否符合正态分布。

总结

在这篇文章中,我们介绍了Python中的残差分析技巧,并介绍了几种主要的工具,如残差散点图、残差直方图和Q-Q图。这些技术通常用于评估模型的准确性和识别模型偏差。熟练掌握这些技术可以帮助我们更好地理解和分析数据,并为我们的机器学习模型提供更好的改进和调整建议。

相关文章

python速学教程(入门到精通)
python速学教程(入门到精通)

python怎么学习?python怎么入门?python在哪学?python怎么学才快?不用担心,这里为大家提供了python速学教程(入门到精通),有需要的小伙伴保存下载就能学习啦!

下载

相关标签:

本站声明:本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn

相关专题

更多
java多线程相关教程合集
java多线程相关教程合集

本专题整合了java多线程相关教程,阅读专题下面的文章了解更多详细内容。

0

2026.01.21

windows激活码分享 windows一键激活教程指南
windows激活码分享 windows一键激活教程指南

Windows 10/11一键激活可以通过PowerShell脚本或KMS工具实现永久或长期激活。最推荐的简便方法是打开PowerShell(管理员),运行 irm https://get.activated.win | iex 脚本,按提示选择数字激活(选项1)。其他方法包括使用HEU KMS Activator工具进行智能激活。

0

2026.01.21

excel表格操作技巧大全 表格制作excel教程
excel表格操作技巧大全 表格制作excel教程

Excel表格操作的核心技巧在于 熟练使用快捷键、数据处理函数及视图工具,如Ctrl+C/V(复制粘贴)、Alt+=(自动求和)、条件格式、数据验证及数据透视表。掌握这些可大幅提升数据分析与办公效率,实现快速录入、查找、筛选和汇总。

1

2026.01.21

毒蘑菇显卡测试网站入口 毒蘑菇测试官网volumeshader_bm
毒蘑菇显卡测试网站入口 毒蘑菇测试官网volumeshader_bm

毒蘑菇VOLUMESHADER_BM测试网站网址为https://toolwa.com/vsbm/,该平台基于WebGL技术通过渲染高复杂度三维分形图形评估设备图形处理能力,用户可通过拖动彩色物体观察画面流畅度判断GPU与CPU协同性能;测试兼容多种设备,但中低端手机易卡顿或崩溃,高端机型可能因发热降频影响表现,桌面端需启用独立显卡并使用支持WebGL的主流浏览器以确保准确结果

2

2026.01.21

github中文官网入口 github中文版官网网页进入
github中文官网入口 github中文版官网网页进入

github中文官网入口https://docs.github.com/zh/get-started,GitHub 是一种基于云的平台,可在其中存储、共享并与他人一起编写代码。 通过将代码存储在GitHub 上的“存储库”中,你可以: “展示或共享”你的工作。 持续“跟踪和管理”对代码的更改。

2

2026.01.21

windows安全中心怎么关闭打开_windows安全中心操作指南
windows安全中心怎么关闭打开_windows安全中心操作指南

Windows安全中心可以通过系统设置轻松开关。 暂时关闭:打开“设置” -> “隐私和安全性” -> “Windows安全中心” -> “病毒和威胁防护” -> “管理设置”,将“实时保护”关闭。打开:同样路径将开关开启即可。如需彻底关闭,需在组策略(gpedit.msc)或注册表中禁用Windows Defender。

1

2026.01.21

C++游戏开发Unreal Engine_C++怎么用Unreal Engine开发游戏
C++游戏开发Unreal Engine_C++怎么用Unreal Engine开发游戏

虚幻引擎(Unreal Engine, 简称UE)是由Epic Games开发的一款功能强大的工业级3D游戏引擎,以高品质实时渲染(如Nanite和Lumen)闻名 。它基于C++语言,为开发者提供高效率的框架、强大的可视化脚本系统(蓝图)、以及针对PC、主机和移动端的完整开发工具,广泛用于游戏、电影制片等领域。

0

2026.01.21

Python GraphQL API 开发实战
Python GraphQL API 开发实战

本专题系统讲解 Python 在 GraphQL API 开发中的实际应用,涵盖 GraphQL 基础概念、Schema 设计、Query 与 Mutation 实现、权限控制、分页与性能优化,以及与现有 REST 服务和数据库的整合方式。通过完整示例,帮助学习者掌握 使用 Python 构建高扩展性、前后端协作友好的 GraphQL 接口服务,适用于中大型应用与复杂数据查询场景。

1

2026.01.21

云朵浏览器入口合集
云朵浏览器入口合集

本专题整合了云朵浏览器入口合集,阅读专题下面的文章了解更多详细地址。

22

2026.01.20

热门下载

更多
网站特效
/
网站源码
/
网站素材
/
前端模板

精品课程

更多
相关推荐
/
热门推荐
/
最新课程
Node.js 教程
Node.js 教程

共57课时 | 9万人学习

Rust 教程
Rust 教程

共28课时 | 4.6万人学习

Vue 教程
Vue 教程

共42课时 | 6.8万人学习

关于我们 免责申明 举报中心 意见反馈 讲师合作 广告合作 最新更新
php中文网:公益在线php培训,帮助PHP学习者快速成长!
关注服务号 技术交流群
PHP中文网订阅号
每天精选资源文章推送

Copyright 2014-2026 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号