0

0

Python中的机器学习超参数调优技巧

WBOY

WBOY

发布时间:2023-06-10 16:23:44

|

1557人浏览过

|

来源于php中文网

原创

随着机器学习应用的广泛普及,越来越多的数据科学家和机器学习开发者开始关注模型的性能优化,其中超参数调优是其中不可或缺的部分。在机器学习中,超参数代表模型的参数,而不是从训练数据中学习到的权重。超参数设置不当可能导致模型在训练和测试中表现不佳,因此超参数调优是关键的一环。

Python提供了很多流行的机器学习库,比如Scikit-learn、TensorFlow等。这些库提供了许多工具来帮助我们进行超参数调优。在本文中,我们将讨论一些Python中的机器学习超参数调优技巧。

  1. 网格搜索

网格搜索是一种简单有效的超参数调优方法。它的核心思想是尝试不同的超参数组合,并对每个组合进行交叉验证,以找到效果最好的超参数组合。在Scikit-learn中,我们可以使用GridSearchCV类来实现网格搜索。

以下是网格搜索的一般流程:

1)定义需要调优的参数和参数组合

立即学习Python免费学习笔记(深入)”;

2)使用GridSearchCV类来进行交叉验证和网格搜索

3)输出最佳的超参数组合

例如,在使用Scikit-learn中的Support Vector Machine(SVM)进行分类时,可以使用以下的代码进行网格搜索:

from sklearn.model_selection import GridSearchCV
from sklearn import svm, datasets

iris = datasets.load_iris()
X = iris.data[:, :2]
y = iris.target

parameters = {'kernel':('linear', 'rbf'), 'C':[0.1, 1, 10]}
svc = svm.SVC()
clf = GridSearchCV(svc, parameters)
clf.fit(X, y)

print("Best parameters:", clf.best_params_)
  1. 随机搜索

网格搜索虽然简单和可靠,但是当超参数穷举空间较大时,计算量会显得异常巨大。随机搜索方法通过在参数空间中随机采样一组参数并评估它们的性能来缓解这种情况。此方法探索更广泛的参数空间,尤其在参数范围广泛且相互独立的情况下,在相同的计算资源下,随机搜索可能比网格搜索更有效。

以下是随机搜索的一般流程:

1)定义需要调优的参数和参数范围

2)使用RandomizedSearchCV类来进行交叉验证和随机搜索

启科网络PHP商城系统
启科网络PHP商城系统

启科网络商城系统由启科网络技术开发团队完全自主开发,使用国内最流行高效的PHP程序语言,并用小巧的MySql作为数据库服务器,并且使用Smarty引擎来分离网站程序与前端设计代码,让建立的网站可以自由制作个性化的页面。 系统使用标签作为数据调用格式,网站前台开发人员只要简单学习系统标签功能和使用方法,将标签设置在制作的HTML模板中进行对网站数据、内容、信息等的调用,即可建设出美观、个性的网站。

下载

3)输出最佳的超参数组合

例如,在Random Forest模型中,可以使用以下的代码进行随机搜索:

from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import RandomizedSearchCV
import numpy as np

# Load data
iris = datasets.load_iris()
X = iris.data[:, :2]
y = iris.target

# Define parameter grid
param_grid = {'n_estimators': np.arange(10, 200, 10),
              'max_features': ['auto', 'sqrt', 'log2'],
              'max_depth' : np.arange(1, 10),
              'criterion' :['gini', 'entropy']
             }

# Random search using 10-fold cross validation
rf = RandomForestClassifier()
rf_random = RandomizedSearchCV(estimator=rf,
                               param_distributions=param_grid,
                               n_iter=100,
                               cv=10,
                               random_state=42)

# Fit the model
rf_random.fit(X, y)

# Print the best parameters
print("Best parameters:", rf_random.best_params_)
  1. 贝叶斯优化

贝叶斯优化是一种高效的超参数调优方法。该方法通过在每个迭代中选择最有可能提高性能的超参数组合来搜索超参数空间,并在此过程中逐步收敛。这种做法因为尝试不同参数时利用了早期运行的结果进行推断,并且因为使用先验概率D对模型的参数进行概率分布建模,因此可以优化只能进行少量探索的情况,而且可以很好地处理离散或连续型参数,不同类型的目标函数和噪音,自动调整预设的搜索规则等问题,在多维超空间优化中优势显著。

以下是贝叶斯优化的一般流程:

1)定义需要调优的参数和参数范围

2)定义目标函数,并使用贝叶斯优化算法进行优化

3)输出最佳的超参数组合

例如,在使用Scikit-learn中的Gradient Boosting Machine(GBM)进行分类时,可以使用以下的代码进行贝叶斯优化:

from sklearn.datasets import load_iris
from sklearn.ensemble import GradientBoostingClassifier
from sklearn.model_selection import cross_val_score
from bayes_opt import BayesianOptimization

# Load data
iris = load_iris()
X = iris.data[:, :2]
y = iris.target

# Define objective function
def gbmler_learning_rate(learning_rate):
    gb = GradientBoostingClassifier(learning_rate=learning_rate)
    return cross_val_score(gb, X, y, cv=5).mean()

# Define parameter space
param_space = {'learning_rate': (0.01, 1.0)}

# Initialize optimizer
optimizer = BayesianOptimization(
    f=gbmler_learning_rate,
    pbounds=param_space,
    random_state=42
)

# Optimize
optimizer.maximize(
    init_points=5,
    n_iter=25
)

# Print the best parameters
print("Best parameters:", optimizer.max['params'])
  1. 可解释性的参数搜索

通常超参数搜索是将分类器思想放在超参数搜索之前,对所有可能的超参数设置进行一些编码,例如在搜索过程中将各个超参数设置排列列成数组的形式,并且将该数组作为输入。执行这种方法的搜索的主要问题是超参数将作为个体出现,将失去其交互效果信息。相反,这一方法是从事简单和可解释的统计建模的一部分。使用贝叶斯最优化的另一个好处是使用概率模型推理时,能够对搜索相机和限制超参数之间的关系。

总结起来,Python提供了很多机器学习超参数调优的技巧,包括网格搜索、随机搜索、贝叶斯优化和可解释性的参数搜索。选择适合你的数据集的方法可以帮助你在超参数调优方面取得更好的结果。

相关文章

python速学教程(入门到精通)
python速学教程(入门到精通)

python怎么学习?python怎么入门?python在哪学?python怎么学才快?不用担心,这里为大家提供了python速学教程(入门到精通),有需要的小伙伴保存下载就能学习啦!

下载

相关标签:

本站声明:本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn

相关专题

更多
高德地图升级方法汇总
高德地图升级方法汇总

本专题整合了高德地图升级相关教程,阅读专题下面的文章了解更多详细内容。

68

2026.01.16

全民K歌得高分教程大全
全民K歌得高分教程大全

本专题整合了全民K歌得高分技巧汇总,阅读专题下面的文章了解更多详细内容。

127

2026.01.16

C++ 单元测试与代码质量保障
C++ 单元测试与代码质量保障

本专题系统讲解 C++ 在单元测试与代码质量保障方面的实战方法,包括测试驱动开发理念、Google Test/Google Mock 的使用、测试用例设计、边界条件验证、持续集成中的自动化测试流程,以及常见代码质量问题的发现与修复。通过工程化示例,帮助开发者建立 可测试、可维护、高质量的 C++ 项目体系。

54

2026.01.16

java数据库连接教程大全
java数据库连接教程大全

本专题整合了java数据库连接相关教程,阅读专题下面的文章了解更多详细内容。

39

2026.01.15

Java音频处理教程汇总
Java音频处理教程汇总

本专题整合了java音频处理教程大全,阅读专题下面的文章了解更多详细内容。

19

2026.01.15

windows查看wifi密码教程大全
windows查看wifi密码教程大全

本专题整合了windows查看wifi密码教程大全,阅读专题下面的文章了解更多详细内容。

85

2026.01.15

浏览器缓存清理方法汇总
浏览器缓存清理方法汇总

本专题整合了浏览器缓存清理教程汇总,阅读专题下面的文章了解更多详细内容。

40

2026.01.15

ps图片相关教程汇总
ps图片相关教程汇总

本专题整合了ps图片设置相关教程合集,阅读专题下面的文章了解更多详细内容。

11

2026.01.15

ppt一键生成相关合集
ppt一键生成相关合集

本专题整合了ppt一键生成相关教程汇总,阅读专题下面的的文章了解更多详细内容。

47

2026.01.15

热门下载

更多
网站特效
/
网站源码
/
网站素材
/
前端模板

精品课程

更多
相关推荐
/
热门推荐
/
最新课程
Node.js 教程
Node.js 教程

共57课时 | 8.8万人学习

CSS3 教程
CSS3 教程

共18课时 | 4.6万人学习

Rust 教程
Rust 教程

共28课时 | 4.5万人学习

关于我们 免责申明 举报中心 意见反馈 讲师合作 广告合作 最新更新
php中文网:公益在线php培训,帮助PHP学习者快速成长!
关注服务号 技术交流群
PHP中文网订阅号
每天精选资源文章推送

Copyright 2014-2026 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号