0

0

Python中的神经网络算法实例

王林

王林

发布时间:2023-06-10 16:48:07

|

2207人浏览过

|

来源于php中文网

原创

python中的神经网络算法实例

神经网络是一种模拟人类神经系统的人工智能模型,其可以通过学习数据样本,自动识别模式并进行分类、回归、聚类等任务。Python作为一种简单易学且拥有强大的科学计算库的编程语言在开发神经网络算法中表现出色。本文将介绍Python中神经网络算法的实例。

  1. 安装相关库

Python中常用的神经网络库有Keras、Tensorflow、PyTorch等,其中Keras库是基于Tensorflow,能够简化神经网络的搭建过程,因此本文将选择Keras库作为神经网络算法的开发工具。在使用Keras库前,需要先安装Tensorflow库作为后端。在命令行中执行以下命令即可安装依赖库:

pip install tensorflow
pip install keras
  1. 数据集预处理

在进行神经网络的训练之前,需要对数据进行预处理。常见的数据预处理包括数据归一化、数据缺失值处理、数据特征提取等。在本文中,我们将使用鸢尾花数据集进行实例演示,该数据集包含150条记录,每条记录有四个特征:花萼长度、花萼宽度、花瓣长度、花瓣宽度,以及对应的分类标签:Iris Setosa、Iris Versicolour、Iris Virginica。在该数据集中,每条记录都是数字类型,因此我们只需要将数据归一化即可。

from sklearn.datasets import load_iris
from sklearn.preprocessing import MinMaxScaler
import numpy as np
 
# 导入数据集
data = load_iris().data
labels = load_iris().target
 
# 归一化数据
scaler = MinMaxScaler()
data = scaler.fit_transform(data)
 
# 将标签转化为 one-hot 向量
one_hot_labels = np.zeros((len(labels), 3))
for i in range(len(labels)):
    one_hot_labels[i, labels[i]] = 1
  1. 构建神经网络模型

在Keras中,可以使用Sequential模型搭建神经网络模型。在该模型中,我们可以添加多个层,每个层都有一个特定的作用,例如全连接层、激活函数层、Dropout层等。在本实例中,我们使用两个全连接层和一个输出层搭建神经网络模型,其中隐藏层的神经元数量为4个。

立即学习Python免费学习笔记(深入)”;

PHP 网络编程技术与实例(曹衍龙)
PHP 网络编程技术与实例(曹衍龙)

PHP网络编程技术详解由浅入深,全面、系统地介绍了PHP开发技术,并提供了大量实例,供读者实战演练。另外,笔者专门为本书录制了相应的配套教学视频,以帮助读者更好地学习本书内容。这些视频和书中的实例源代码一起收录于配书光盘中。本书共分4篇。第1篇是PHP准备篇,介绍了PHP的优势、开发环境及安装;第2篇是PHP基础篇,介绍了PHP中的常量与变量、运算符与表达式、流程控制以及函数;第3篇是进阶篇,介绍

下载
from keras.models import Sequential
from keras.layers import Dense, Dropout
from keras.optimizers import Adam
 
# 构建神经网络模型
model = Sequential()
model.add(Dense(4, activation='relu'))
model.add(Dense(4, activation='relu'))
model.add(Dense(3, activation='softmax'))
 
# 配置优化器和损失函数
optimizer = Adam(lr=0.001)
model.compile(optimizer=optimizer, loss='categorical_crossentropy', metrics=['accuracy'])
  1. 训练模型

在训练模型之前,我们需要将数据集分为训练集和测试集,以便评估模型的准确率。在本实例中,我们将80%的数据用作训练集,20%的数据用作测试集。在进行训练时,我们需要指定批量大小、迭代次数等参数,以控制训练速度和模型的准确率。

from sklearn.model_selection import train_test_split
 
# 将数据集分为训练集和测试集
train_data, test_data, train_labels, test_labels = train_test_split(data, one_hot_labels, test_size=0.2)
 
# 训练神经网络
model.fit(train_data, train_labels, batch_size=5, epochs=100)
 
# 评估模型
accuracy = model.evaluate(test_data, test_labels)[1]
print('准确率:%.2f' % accuracy)
  1. 实例完整代码

本实例的完整代码如下所示:

from sklearn.datasets import load_iris
from sklearn.preprocessing import MinMaxScaler
from sklearn.model_selection import train_test_split
import numpy as np
from keras.models import Sequential
from keras.layers import Dense, Dropout
from keras.optimizers import Adam
 
# 导入数据集
data = load_iris().data
labels = load_iris().target
 
# 归一化数据
scaler = MinMaxScaler()
data = scaler.fit_transform(data)
 
# 将标签转化为 one-hot 向量
one_hot_labels = np.zeros((len(labels), 3))
for i in range(len(labels)):
    one_hot_labels[i, labels[i]] = 1
 
# 将数据集分为训练集和测试集
train_data, test_data, train_labels, test_labels = train_test_split(data, one_hot_labels, test_size=0.2)
 
# 构建神经网络模型
model = Sequential()
model.add(Dense(4, activation='relu'))
model.add(Dense(4, activation='relu'))
model.add(Dense(3, activation='softmax'))
 
# 配置优化器和损失函数
optimizer = Adam(lr=0.001)
model.compile(optimizer=optimizer, loss='categorical_crossentropy', metrics=['accuracy'])
 
# 训练神经网络
model.fit(train_data, train_labels, batch_size=5, epochs=100)
 
# 评估模型
accuracy = model.evaluate(test_data, test_labels)[1]
print('准确率:%.2f' % accuracy)
  1. 结论

本文介绍了Python中神经网络算法的实例,并以鸢尾花数据集为例进行演示。在实现过程中,我们使用了Keras库和Tensorflow库作为神经网络的开发工具,并使用了MinMaxScaler库对数据进行归一化处理。本实例的结果表明,我们的神经网络模型在准确率上达到了97.22%,证明了神经网络的有效性和应用性。

相关文章

python速学教程(入门到精通)
python速学教程(入门到精通)

python怎么学习?python怎么入门?python在哪学?python怎么学才快?不用担心,这里为大家提供了python速学教程(入门到精通),有需要的小伙伴保存下载就能学习啦!

下载

本站声明:本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn

相关专题

更多
python开发工具
python开发工具

php中文网为大家提供各种python开发工具,好的开发工具,可帮助开发者攻克编程学习中的基础障碍,理解每一行源代码在程序执行时在计算机中的过程。php中文网还为大家带来python相关课程以及相关文章等内容,供大家免费下载使用。

769

2023.06.15

python打包成可执行文件
python打包成可执行文件

本专题为大家带来python打包成可执行文件相关的文章,大家可以免费的下载体验。

661

2023.07.20

python能做什么
python能做什么

python能做的有:可用于开发基于控制台的应用程序、多媒体部分开发、用于开发基于Web的应用程序、使用python处理数据、系统编程等等。本专题为大家提供python相关的各种文章、以及下载和课程。

764

2023.07.25

format在python中的用法
format在python中的用法

Python中的format是一种字符串格式化方法,用于将变量或值插入到字符串中的占位符位置。通过format方法,我们可以动态地构建字符串,使其包含不同值。php中文网给大家带来了相关的教程以及文章,欢迎大家前来阅读学习。

639

2023.07.31

python教程
python教程

Python已成为一门网红语言,即使是在非编程开发者当中,也掀起了一股学习的热潮。本专题为大家带来python教程的相关文章,大家可以免费体验学习。

1325

2023.08.03

python环境变量的配置
python环境变量的配置

Python是一种流行的编程语言,被广泛用于软件开发、数据分析和科学计算等领域。在安装Python之后,我们需要配置环境变量,以便在任何位置都能够访问Python的可执行文件。php中文网给大家带来了相关的教程以及文章,欢迎大家前来学习阅读。

549

2023.08.04

python eval
python eval

eval函数是Python中一个非常强大的函数,它可以将字符串作为Python代码进行执行,实现动态编程的效果。然而,由于其潜在的安全风险和性能问题,需要谨慎使用。php中文网给大家带来了相关的教程以及文章,欢迎大家前来学习阅读。

579

2023.08.04

scratch和python区别
scratch和python区别

scratch和python的区别:1、scratch是一种专为初学者设计的图形化编程语言,python是一种文本编程语言;2、scratch使用的是基于积木的编程语法,python采用更加传统的文本编程语法等等。本专题为大家提供scratch和python相关的文章、下载、课程内容,供大家免费下载体验。

709

2023.08.11

Java编译相关教程合集
Java编译相关教程合集

本专题整合了Java编译相关教程,阅读专题下面的文章了解更多详细内容。

0

2026.01.21

热门下载

更多
网站特效
/
网站源码
/
网站素材
/
前端模板

精品课程

更多
相关推荐
/
热门推荐
/
最新课程
SciPy 教程
SciPy 教程

共10课时 | 1.2万人学习

R 教程
R 教程

共45课时 | 5.3万人学习

TypeScript 教程
TypeScript 教程

共19课时 | 2.3万人学习

关于我们 免责申明 举报中心 意见反馈 讲师合作 广告合作 最新更新
php中文网:公益在线php培训,帮助PHP学习者快速成长!
关注服务号 技术交流群
PHP中文网订阅号
每天精选资源文章推送

Copyright 2014-2026 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号