0

0

Python中的Lasso回归实例

WBOY

WBOY

发布时间:2023-06-10 20:52:55

|

2433人浏览过

|

来源于php中文网

原创

lasso回归是一种流行应用于机器学习的线性回归方法,目的是通过忽略不相关的特征变量来寻找最佳拟合模型。本文将介绍如何在python中实现lasso回归,并提供一个实际的数据集进行演示。

Lasso回归简介

Lasso回归是一种通过向目标函数中添加惩罚项来解决普通最小二乘问题的方法。该惩罚项利用L1正则化(也称为Lasso惩罚)来实现,其形式如下所示:

$J(eta)=rac{1}{2n}sum_{i=1}^{n}(y_i-sum_{j=1}^{p}X_{ij}eta_j)^2 + lpha sum_{j=1}^{p}|eta_j|$

其中,$y$是响应变量,$X$是自变量矩阵,$eta$是模型系数,$n$是样本数,$p$是特征数,$lpha$是惩罚参数。Lasso回归中难解的部分在于惩罚项的非凸优化问题。

立即学习Python免费学习笔记(深入)”;

实现Lasso回归的一种方法是通过坐标下降(CD)算法来求解。基本思想是在每次迭代中,只改变一个系数。这样,CD算法巧妙地绕过了惩罚项的非凸优化问题。

Python Lasso回归实现

Python提供了许多机器学习库,如Scikit-learn,能够轻松实现Lasso回归。

首先,导入所需的库如下:

aspx1财付通支付接口源码
aspx1财付通支付接口源码

本支付接口的特点,主要是用xml文件来记录订单详情和支付详情。代码比较简单,只要将里面的商户号、商户key换成你自己的,将回调url换成你的网站,就可以使用了。通过这个实例也可以很好的了解一般在线支付接口的基本工作原理。其中的pay.config文件记录的是支付详情,order.config是订单详情

下载
import numpy as np
import pandas as pd
from sklearn.linear_model import LassoCV
from sklearn.datasets import load_boston
from sklearn.preprocessing import StandardScaler

接下来,我们加载Boston房价数据集并进行标准化处理:

boston = load_boston()
X = boston.data
y = boston.target
X = StandardScaler().fit_transform(X)

然后,我们用Scikit-learn中的LassoCV实现Lasso回归。该模型自动进行交叉验证并选择最优的$lpha$值。

lasso_reg = LassoCV(alphas=np.logspace(-3, 3, 100), cv=5, max_iter=100000)
lasso_reg.fit(X, y)

最后,我们输出所得到的最优$lpha$值和模型系数:

print('Best alpha:', lasso_reg.alpha_)
print('Model coefficients:', lasso_reg.coef_)

完整代码示例:

import numpy as np
import pandas as pd
from sklearn.linear_model import LassoCV
from sklearn.datasets import load_boston
from sklearn.preprocessing import StandardScaler

boston = load_boston()
X = boston.data
y = boston.target
X = StandardScaler().fit_transform(X)

lasso_reg = LassoCV(alphas=np.logspace(-3, 3, 100), cv=5, max_iter=100000)
lasso_reg.fit(X, y)

print('Best alpha:', lasso_reg.alpha_)
print('Model coefficients:', lasso_reg.coef_)

输出结果如下:

Best alpha: 0.10000000000000002
Model coefficients: [-0.89521162  1.08556604  0.14359222  0.68736347 -2.04113155  2.67946138
  0.01939491 -3.08179223  2.63754058 -2.05806301 -2.05202597  0.89812875
 -3.73066641]

这表明,通过Lasso回归,我们可以确定对Boston房价预测的最佳模型,并提取与响应变量最相关的特征。

结论

本文介绍了如何在Python中实现Lasso回归,并通过一个实际的数据集演示了该方法的应用。Lasso回归是一种非常有用的线性回归技术,特别适合处理高维数据。在实际问题中,可以通过交叉验证和标准化等技术,优化模型表现,并提取最相关的特征。

相关文章

python速学教程(入门到精通)
python速学教程(入门到精通)

python怎么学习?python怎么入门?python在哪学?python怎么学才快?不用担心,这里为大家提供了python速学教程(入门到精通),有需要的小伙伴保存下载就能学习啦!

下载

相关标签:

本站声明:本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn

相关专题

更多
Java编译相关教程合集
Java编译相关教程合集

本专题整合了Java编译相关教程,阅读专题下面的文章了解更多详细内容。

0

2026.01.21

C++多线程相关合集
C++多线程相关合集

本专题整合了C++多线程相关教程,阅读专题下面的的文章了解更多详细内容。

0

2026.01.21

无人机驾驶证报考 uom民用无人机综合管理平台官网
无人机驾驶证报考 uom民用无人机综合管理平台官网

无人机驾驶证(CAAC执照)报考需年满16周岁,初中以上学历,身体健康(矫正视力1.0以上,无严重疾病),且无犯罪记录。个人需通过民航局授权的训练机构报名,经理论(法规、原理)、模拟飞行、实操(GPS/姿态模式)及地面站训练后考试合格,通常15-25天拿证。

4

2026.01.21

Python多线程合集
Python多线程合集

本专题整合了Python多线程相关教程,阅读专题下面的文章了解更多详细内容。

0

2026.01.21

java多线程相关教程合集
java多线程相关教程合集

本专题整合了java多线程相关教程,阅读专题下面的文章了解更多详细内容。

1

2026.01.21

windows激活码分享 windows一键激活教程指南
windows激活码分享 windows一键激活教程指南

Windows 10/11一键激活可以通过PowerShell脚本或KMS工具实现永久或长期激活。最推荐的简便方法是打开PowerShell(管理员),运行 irm https://get.activated.win | iex 脚本,按提示选择数字激活(选项1)。其他方法包括使用HEU KMS Activator工具进行智能激活。

1

2026.01.21

excel表格操作技巧大全 表格制作excel教程
excel表格操作技巧大全 表格制作excel教程

Excel表格操作的核心技巧在于 熟练使用快捷键、数据处理函数及视图工具,如Ctrl+C/V(复制粘贴)、Alt+=(自动求和)、条件格式、数据验证及数据透视表。掌握这些可大幅提升数据分析与办公效率,实现快速录入、查找、筛选和汇总。

4

2026.01.21

毒蘑菇显卡测试网站入口 毒蘑菇测试官网volumeshader_bm
毒蘑菇显卡测试网站入口 毒蘑菇测试官网volumeshader_bm

毒蘑菇VOLUMESHADER_BM测试网站网址为https://toolwa.com/vsbm/,该平台基于WebGL技术通过渲染高复杂度三维分形图形评估设备图形处理能力,用户可通过拖动彩色物体观察画面流畅度判断GPU与CPU协同性能;测试兼容多种设备,但中低端手机易卡顿或崩溃,高端机型可能因发热降频影响表现,桌面端需启用独立显卡并使用支持WebGL的主流浏览器以确保准确结果

9

2026.01.21

github中文官网入口 github中文版官网网页进入
github中文官网入口 github中文版官网网页进入

github中文官网入口https://docs.github.com/zh/get-started,GitHub 是一种基于云的平台,可在其中存储、共享并与他人一起编写代码。 通过将代码存储在GitHub 上的“存储库”中,你可以: “展示或共享”你的工作。 持续“跟踪和管理”对代码的更改。

5

2026.01.21

热门下载

更多
网站特效
/
网站源码
/
网站素材
/
前端模板

精品课程

更多
相关推荐
/
热门推荐
/
最新课程
最新Python教程 从入门到精通
最新Python教程 从入门到精通

共4课时 | 9.9万人学习

Django 教程
Django 教程

共28课时 | 3.3万人学习

SciPy 教程
SciPy 教程

共10课时 | 1.2万人学习

关于我们 免责申明 举报中心 意见反馈 讲师合作 广告合作 最新更新
php中文网:公益在线php培训,帮助PHP学习者快速成长!
关注服务号 技术交流群
PHP中文网订阅号
每天精选资源文章推送

Copyright 2014-2026 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号