Python中的手写数字识别实例

WBOY
发布: 2023-06-11 10:13:36
原创
2631人浏览过

python是一门非常强大的编程语言,广泛应用于数据分析、机器学习、图像处理等领域。在机器学习领域中,手写数字识别是一个非常重要的问题,可以应用于验证码识别、自动驾驶、语音识别等多个领域。在本文中,我们将介绍如何用python实现手写数字识别。

  1. 数据集介绍

在机器学习中,数据集的选择非常重要。对于手写数字识别问题而言,我们需要一个带有标签的数据集。最常用的数据集是MNIST(Modified National Institute of Standards and Technology)数据集,一共包含了60000张训练图和10000张测试图,每张图像都是28x28像素的灰度图像。

  1. 加载数据集

为了使用MNIST数据集,我们可以通过python的库来加载它。在这个例子中,我们使用Tensorflow的Keras库来加载MNIST数据集。

from keras.datasets import mnist

# 加载MNIST数据集
(train_images, train_labels), (test_images, test_labels) = mnist.load_data()
登录后复制

这里我们将训练图像和标签存储在 train_images 和 train_labels 中,将测试图像和标签存储在 test_images 和 test_labels 中。

  1. 数据预处理

在机器学习中,我们通常需要对数据进行预处理,以提高模型的表现。对于MNIST数据集,我们需要将像素值转换为0到1之间的浮点数,并将28x28的图像转换为784维向量,以便我们可以将其输入到模型中。

立即学习Python免费学习笔记(深入)”;

# 数据预处理
train_images = train_images.reshape((60000, 28 * 28))
train_images = train_images.astype('float32') / 255

test_images = test_images.reshape((10000, 28 * 28))
test_images = test_images.astype('float32') / 255
登录后复制
  1. 构建模型

在Keras中构建神经网络非常简单,我们只需要定义一个Sequential对象,然后添加层即可。对于这个手写数字识别问题,我们使用一个包含两个密集层的简单神经网络。

from keras import models
from keras import layers

network = models.Sequential()
network.add(layers.Dense(512, activation='relu', input_shape=(28 * 28,)))
network.add(layers.Dense(10, activation='softmax'))
登录后复制

这里我们使用 Dense 层,每个神经元都与前一层的所有神经元相连,并使用ReLU激活函数来增加非线性。

  1. 编译模型

在训练模型之前,我们需要通过编译来配置学习过程。在这里,我们使用交叉熵损失函数和RMSprop优化器。同时,我们还将添加准确率作为衡量指标。

network.compile(optimizer='rmsprop',
                loss='categorical_crossentropy',
                metrics=['accuracy'])
登录后复制
  1. 训练模型

现在我们可以使用我们加载的数据集来训练模型了。在这里,我们将训练模型5次(epochs=5)。

network.fit(train_images, train_labels, epochs=5, batch_size=128)
登录后复制
  1. 测试模型

使用训练好的模型对测试数据进行预测并计算准确率。

test_loss, test_acc = network.evaluate(test_images, test_labels)
登录后复制
  1. 实际应用

现在我们已经训练好了一个手写数字识别模型,可以在实际应用中使用了。以下是一个例子,演示了如何使用模型来识别手写数字。

import numpy as np
from keras.preprocessing import image

# 加载手写数字图像
img = image.load_img(path_to_img, grayscale=True, target_size=(28, 28))
x = image.img_to_array(img)
x = np.expand_dims(x, axis=0)

# 预测手写数字
prediction = network.predict(x)

# 输出结果
print(prediction)
登录后复制

这里我们首先使用image.load_img函数加载一个手写数字图像,然后将其转换为模型所需的格式。最后使用network.predict函数进行预测,并输出结果。

  1. 总结

在本文中,我们介绍了如何使用Python和Keras库实现手写数字识别。在这个过程中,我们学习了加载MNIST数据集、数据预处理、构建神经网络模型、编译模型、训练模型、测试模型以及实际应用。希望这个例子可以帮助初学者更好地理解机器学习。

以上就是Python中的手写数字识别实例的详细内容,更多请关注php中文网其它相关文章!

python速学教程(入门到精通)
python速学教程(入门到精通)

python怎么学习?python怎么入门?python在哪学?python怎么学才快?不用担心,这里为大家提供了python速学教程(入门到精通),有需要的小伙伴保存下载就能学习啦!

下载
相关标签:
来源:php中文网
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn
最新问题
开源免费商场系统广告
热门教程
更多>
最新下载
更多>
网站特效
网站源码
网站素材
前端模板
关于我们 免责申明 意见反馈 讲师合作 广告合作 最新更新
php中文网:公益在线php培训,帮助PHP学习者快速成长!
关注服务号 技术交流群
PHP中文网订阅号
每天精选资源文章推送
PHP中文网APP
随时随地碎片化学习
PHP中文网抖音号
发现有趣的

Copyright 2014-2025 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号