0

0

Python中的逻辑回归算法实例

PHPz

PHPz

发布时间:2023-06-11 17:52:33

|

1899人浏览过

|

来源于php中文网

原创

python中的逻辑回归算法实例

逻辑回归是一种常用的分类算法,广泛应用于机器学习和数据分析领域。本文将介绍在Python中如何使用逻辑回归算法来进行分类,具体实现步骤如下:

步骤1:导入必要的Python库

在开始实现逻辑回归算法之前,我们需要导入必要的Python库,例如:NumPy和pandas(用于数据处理和清洗)、sklearn和matplotlib(用于模型训练和评价以及数据可视化)。具体代码如下:

import numpy as np
import pandas as pd
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score,confusion_matrix
import matplotlib.pyplot as plt

%matplotlib inline

步骤2:加载数据集

立即学习Python免费学习笔记(深入)”;

接下来,我们需要加载数据集。这里以鸢尾花数据集(iris)为例。该数据集包含了3个不同种类的鸢尾花(Setosa、Versicolour和Virginica)的4个特征:花萼长度、花萼宽度、花瓣长度和花瓣宽度。我们可以通过使用pandas读取CSV格式的数据文件来加载数据集,具体代码如下:

data=pd.read_csv('iris.csv')
print(data.head())

步骤3:数据处理和分离

OpenCV
OpenCV

开源计算机视觉库拥有超过2500个算法,提供详细的文档和实时计算机视觉的示例代码。它可以在Windows、Linux、Mac OS X、Android、iOS上运行,并通过JavaScript在您的浏览器中使用。语言:C++、Python、Julia、Javascript主页:https://opencv.org问答论坛:https://forum.opencv.org/文档:https://docs.opencv.org源代码:https://github.com/opencv请特别关注我们的教程!ht

下载

在将数据输入到逻辑回归模型之前,我们需要处理和分离数据。首先,我们需要将数据集中的标签列分离出来,作为我们的目标变量(y),同时将其余的特征列作为我们的自变量(X)。其次,我们需要对数据进行处理,包括:处理缺失数据、处理异常值、转换类别变量等。在这里,我们可以通过使用sklearn库中的train_test_split函数将数据集随机地分成训练数据和测试数据两部分。具体代码如下:

X=data.iloc[:,:-1]
y=data.iloc[:,-1]

X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.3,random_state=42)

步骤4:模型训练和评价

现在,我们可以使用逻辑回归算法对训练数据进行拟合。我们可以通过使用sklearn库中的LogisticRegression类来创建一个逻辑回归对象,然后使用fit方法对训练数据进行拟合。训练完成后,我们可以使用predict方法对测试数据进行预测,并使用sklearn库中的accuracy_score和confusion_matrix函数对模型进行评价。具体代码如下:

lr=LogisticRegression()
lr.fit(X_train,y_train)

y_pred=lr.predict(X_test)

acc=accuracy_score(y_test,y_pred)
cm=confusion_matrix(y_test,y_pred)

print('Accuracy:', acc)
print('Confusion Matrix:
', cm)

步骤5:结果可视化

最后,我们可以使用matplotlib库来可视化我们的结果。例如,我们可以使用散点图或柱状图来展示数据的特征以及逻辑回归分类边界。具体代码如下:

colors=['blue','green','red']
markers=['o','s','^']
labels=['Setosa','Versicolour','Virginica']

for i, target in enumerate(set(data.iloc[:,-1])):
    plt.scatter(x=data.loc[data.iloc[:,-1]==target,'petal_length'], 
                y=data.loc[data.iloc[:,-1]==target,'petal_width'],
                c=colors[i],
                marker=markers[i],
                label=labels[i])

x=np.linspace(0,8,1000)
y=(-lr.coef_[0][0]*x-lr.intercept_)/lr.coef_[0][1]
plt.plot(x,y,'k-',label='Decision Boundary')

plt.xlabel('Petal Length')
plt.ylabel('Petal Width')
plt.legend(loc='lower right')
plt.show()

综上所述,以上是Python中实现逻辑回归算法的基本步骤,可以根据具体的数据集和分类问题进行调整和改进。逻辑回归算法虽然简单易用,但也需要充分理解其原理,同时进行适当的数据处理和模型优化,以达到更好的分类结果。

相关文章

python速学教程(入门到精通)
python速学教程(入门到精通)

python怎么学习?python怎么入门?python在哪学?python怎么学才快?不用担心,这里为大家提供了python速学教程(入门到精通),有需要的小伙伴保存下载就能学习啦!

下载

相关标签:

本站声明:本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn

相关专题

更多
Java编译相关教程合集
Java编译相关教程合集

本专题整合了Java编译相关教程,阅读专题下面的文章了解更多详细内容。

7

2026.01.21

C++多线程相关合集
C++多线程相关合集

本专题整合了C++多线程相关教程,阅读专题下面的的文章了解更多详细内容。

2

2026.01.21

无人机驾驶证报考 uom民用无人机综合管理平台官网
无人机驾驶证报考 uom民用无人机综合管理平台官网

无人机驾驶证(CAAC执照)报考需年满16周岁,初中以上学历,身体健康(矫正视力1.0以上,无严重疾病),且无犯罪记录。个人需通过民航局授权的训练机构报名,经理论(法规、原理)、模拟飞行、实操(GPS/姿态模式)及地面站训练后考试合格,通常15-25天拿证。

13

2026.01.21

Python多线程合集
Python多线程合集

本专题整合了Python多线程相关教程,阅读专题下面的文章了解更多详细内容。

1

2026.01.21

java多线程相关教程合集
java多线程相关教程合集

本专题整合了java多线程相关教程,阅读专题下面的文章了解更多详细内容。

2

2026.01.21

windows激活码分享 windows一键激活教程指南
windows激活码分享 windows一键激活教程指南

Windows 10/11一键激活可以通过PowerShell脚本或KMS工具实现永久或长期激活。最推荐的简便方法是打开PowerShell(管理员),运行 irm https://get.activated.win | iex 脚本,按提示选择数字激活(选项1)。其他方法包括使用HEU KMS Activator工具进行智能激活。

2

2026.01.21

excel表格操作技巧大全 表格制作excel教程
excel表格操作技巧大全 表格制作excel教程

Excel表格操作的核心技巧在于 熟练使用快捷键、数据处理函数及视图工具,如Ctrl+C/V(复制粘贴)、Alt+=(自动求和)、条件格式、数据验证及数据透视表。掌握这些可大幅提升数据分析与办公效率,实现快速录入、查找、筛选和汇总。

6

2026.01.21

毒蘑菇显卡测试网站入口 毒蘑菇测试官网volumeshader_bm
毒蘑菇显卡测试网站入口 毒蘑菇测试官网volumeshader_bm

毒蘑菇VOLUMESHADER_BM测试网站网址为https://toolwa.com/vsbm/,该平台基于WebGL技术通过渲染高复杂度三维分形图形评估设备图形处理能力,用户可通过拖动彩色物体观察画面流畅度判断GPU与CPU协同性能;测试兼容多种设备,但中低端手机易卡顿或崩溃,高端机型可能因发热降频影响表现,桌面端需启用独立显卡并使用支持WebGL的主流浏览器以确保准确结果

10

2026.01.21

github中文官网入口 github中文版官网网页进入
github中文官网入口 github中文版官网网页进入

github中文官网入口https://docs.github.com/zh/get-started,GitHub 是一种基于云的平台,可在其中存储、共享并与他人一起编写代码。 通过将代码存储在GitHub 上的“存储库”中,你可以: “展示或共享”你的工作。 持续“跟踪和管理”对代码的更改。

7

2026.01.21

热门下载

更多
网站特效
/
网站源码
/
网站素材
/
前端模板

相关下载

更多

精品课程

更多
相关推荐
/
热门推荐
/
最新课程
最新Python教程 从入门到精通
最新Python教程 从入门到精通

共4课时 | 10.3万人学习

Django 教程
Django 教程

共28课时 | 3.3万人学习

SciPy 教程
SciPy 教程

共10课时 | 1.2万人学习

关于我们 免责申明 举报中心 意见反馈 讲师合作 广告合作 最新更新
php中文网:公益在线php培训,帮助PHP学习者快速成长!
关注服务号 技术交流群
PHP中文网订阅号
每天精选资源文章推送

Copyright 2014-2026 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号