0

0

Scrapy实现新闻网站数据采集与分析

PHPz

PHPz

发布时间:2023-06-22 19:34:35

|

2113人浏览过

|

来源于php中文网

原创

随着互联网技术的不断发展,新闻网站已成为人们获取时事信息的主要途径。如何快速、高效地采集新闻网站的数据并进行分析,已成为当前互联网领域的重要研究方向之一。本文将介绍如何使用scrapy框架来实现新闻网站的数据采集与分析。

一、Scrapy框架简介

Scrapy是一个Python编写的开源网络爬虫框架,它可以用于从网站上提取结构化数据。Scrapy框架基于Twisted框架,可以快速、高效地爬取大量数据。Scrapy具有以下特点:

  1. 强大的功能——Scrapy提供了许多有用的功能,例如自定义的请求和处理器、自动机制、调试工具等。
  2. 灵活的配置——Scrapy框架提供了大量的配置选项,可以根据具体的爬虫需求进行灵活配置。
  3. 易于扩展——Scrapy的架构设计非常清晰,可以方便地进行扩展和二次开发。

二、新闻网站数据采集

针对新闻网站的数据采集,我们可以使用Scrapy框架对新闻网站进行爬虫。下面以新浪新闻网站为例,介绍Scrapy框架的使用。

  1. 创建新的Scrapy项目

在命令行中输入以下命令,创建一个新的Scrapy项目:

scrapy startproject sina_news

该命令会在当前目录下创建一个名为sina_news的新Scrapy项目。

  1. 编写Spider

在新建的Scrapy项目中,可以通过编写Spider实现网络爬虫。在Scrapy中,Spider是一个特殊的Python类,用于定义如何爬取网站的数据。以下是一个新浪新闻网站的Spider示例:

import scrapy

class SinaNewsSpider(scrapy.Spider):
    name = 'sina_news'
    start_urls = [
        'https://news.sina.com.cn/', # 新浪新闻首页
    ]

    def parse(self, response):
        for news in response.css('div.news-item'):
            yield {
                'title': news.css('a::text').extract_first(),
                'link': news.css('a::attr(href)').extract_first(),
                'datetime': news.css('span::text').extract_first(),
            }

Spider定义了爬取新闻网站的规则和对响应进行解析的方式。在上面的代码中,我们定义了一个名为"sina_news"的Spider,并指定了起始URL为新浪新闻首页。同时,我们还定义了一个parse函数,用于解析网站的响应。

在这个parse函数中,我们使用了CSS Selector语法提取了新闻的标题、链接和发布时间,并将这些信息以字典形式返回。

  1. 运行Spider

完成Spider编写后,我们就可以运行这个Spider并爬取数据了。在命令行中输入以下命令:

scrapy crawl sina_news -o sina_news.json

该命令会启动"sina_news"的Spider,并将爬取到的数据保存到名为sina_news.json的JSON文件中。

三、新闻网站数据分析

在完成数据的采集后,我们需要对采集到的数据进行分析,并从中提取出有价值的信息。

  1. 数据清洗

在大规模采集数据时,常常会遇到一些噪声数据。因此,在进行数据分析之前,我们需要对采集到的数据进行清洗。下面以Python Pandas库为例,介绍如何进行数据清洗。

读取采集到的新浪新闻数据:

import pandas as pd

df = pd.read_json('sina_news.json')

现在我们得到了一个DataFrame类型的数据集。假设在这个数据集中有一些重复数据,我们可以使用Pandas库进行数据清洗:

华友协同办公自动化OA系统
华友协同办公自动化OA系统

华友协同办公管理系统(华友OA),基于微软最新的.net 2.0平台和SQL Server数据库,集成强大的Ajax技术,采用多层分布式架构,实现统一办公平台,功能强大、价格便宜,是适用于企事业单位的通用型网络协同办公系统。 系统秉承协同办公的思想,集成即时通讯、日记管理、通知管理、邮件管理、新闻、考勤管理、短信管理、个人文件柜、日程安排、工作计划、工作日清、通讯录、公文流转、论坛、在线调查、

下载

df.drop_duplicates(inplace=True)

上面这行代码会删除数据集中的重复数据。

  1. 数据分析

经过数据清洗后,我们可以对采集到的数据进行进一步的分析。下面介绍几个常用的数据分析技术。

(1) 关键词分析

我们可以通过对新闻标题进行关键词分析,了解当前时事热点。以下是一个对新浪新闻标题进行关键词分析的示例:

from jieba.analyse import extract_tags

keywords = extract_tags(df['title'].to_string(), topK=20, withWeight=False, allowPOS=('ns', 'n'))
print(keywords)

上面这段代码使用了jieba库的extract_tags函数,提取了新闻标题中的前20个关键词。

(2) 时间序列分析

我们可以通过按时间顺序对新闻标题进行统计,了解新闻事件发生的趋势。以下是一个按照月份对新浪新闻进行时间序列分析的示例:

df['datetime'] = pd.to_datetime(df['datetime'])
df = df.set_index('datetime')
df_month = df.resample('M').count()
print(df_month)

上面这段代码将新闻发布时间转换为Pandas的Datetime类型,并将其设置为数据集的索引。然后,我们使用了resample函数对月份进行重采样,并计算了每月发布的新闻数量。

(3) 基于情感分析的分类

我们可以通过对新闻标题进行情感分析,对新闻进行分类。以下是一个对新浪新闻进行情感分析的示例:

from snownlp import SnowNLP

df['sentiment'] = df['title'].apply(lambda x: SnowNLP(x).sentiments)
positive_news = df[df['sentiment'] > 0.6]
negative_news = df[df['sentiment'] print('Positive News Count:', len(positive_news))
print('Negative News Count:', len(negative_news))

上面这段代码使用了SnowNLP库进行情感分析,并将情感值大于0.6的新闻定义为正面新闻,情感值小于等于0.4的新闻定义为负面新闻。

四、总结

本文介绍了如何使用Scrapy框架实现新闻网站数据的采集和Pandas库进行数据清洗和分析。Scrapy框架提供了强大的网络爬虫功能,可以快速、高效地爬取大量数据。Pandas库提供了许多数据处理和统计分析的函数,可以帮助我们从采集到的数据中提取有价值的信息。通过使用这些工具,我们可以更好地了解当前时事热点,并从中获取有用的信息。

相关专题

更多
Java编译相关教程合集
Java编译相关教程合集

本专题整合了Java编译相关教程,阅读专题下面的文章了解更多详细内容。

5

2026.01.21

C++多线程相关合集
C++多线程相关合集

本专题整合了C++多线程相关教程,阅读专题下面的的文章了解更多详细内容。

0

2026.01.21

无人机驾驶证报考 uom民用无人机综合管理平台官网
无人机驾驶证报考 uom民用无人机综合管理平台官网

无人机驾驶证(CAAC执照)报考需年满16周岁,初中以上学历,身体健康(矫正视力1.0以上,无严重疾病),且无犯罪记录。个人需通过民航局授权的训练机构报名,经理论(法规、原理)、模拟飞行、实操(GPS/姿态模式)及地面站训练后考试合格,通常15-25天拿证。

7

2026.01.21

Python多线程合集
Python多线程合集

本专题整合了Python多线程相关教程,阅读专题下面的文章了解更多详细内容。

1

2026.01.21

java多线程相关教程合集
java多线程相关教程合集

本专题整合了java多线程相关教程,阅读专题下面的文章了解更多详细内容。

2

2026.01.21

windows激活码分享 windows一键激活教程指南
windows激活码分享 windows一键激活教程指南

Windows 10/11一键激活可以通过PowerShell脚本或KMS工具实现永久或长期激活。最推荐的简便方法是打开PowerShell(管理员),运行 irm https://get.activated.win | iex 脚本,按提示选择数字激活(选项1)。其他方法包括使用HEU KMS Activator工具进行智能激活。

2

2026.01.21

excel表格操作技巧大全 表格制作excel教程
excel表格操作技巧大全 表格制作excel教程

Excel表格操作的核心技巧在于 熟练使用快捷键、数据处理函数及视图工具,如Ctrl+C/V(复制粘贴)、Alt+=(自动求和)、条件格式、数据验证及数据透视表。掌握这些可大幅提升数据分析与办公效率,实现快速录入、查找、筛选和汇总。

6

2026.01.21

毒蘑菇显卡测试网站入口 毒蘑菇测试官网volumeshader_bm
毒蘑菇显卡测试网站入口 毒蘑菇测试官网volumeshader_bm

毒蘑菇VOLUMESHADER_BM测试网站网址为https://toolwa.com/vsbm/,该平台基于WebGL技术通过渲染高复杂度三维分形图形评估设备图形处理能力,用户可通过拖动彩色物体观察画面流畅度判断GPU与CPU协同性能;测试兼容多种设备,但中低端手机易卡顿或崩溃,高端机型可能因发热降频影响表现,桌面端需启用独立显卡并使用支持WebGL的主流浏览器以确保准确结果

9

2026.01.21

github中文官网入口 github中文版官网网页进入
github中文官网入口 github中文版官网网页进入

github中文官网入口https://docs.github.com/zh/get-started,GitHub 是一种基于云的平台,可在其中存储、共享并与他人一起编写代码。 通过将代码存储在GitHub 上的“存储库”中,你可以: “展示或共享”你的工作。 持续“跟踪和管理”对代码的更改。

7

2026.01.21

热门下载

更多
网站特效
/
网站源码
/
网站素材
/
前端模板

精品课程

更多
相关推荐
/
热门推荐
/
最新课程
CSS3 教程
CSS3 教程

共18课时 | 4.7万人学习

Git 教程
Git 教程

共21课时 | 2.8万人学习

Excel 教程
Excel 教程

共162课时 | 12.7万人学习

关于我们 免责申明 举报中心 意见反馈 讲师合作 广告合作 最新更新
php中文网:公益在线php培训,帮助PHP学习者快速成长!
关注服务号 技术交流群
PHP中文网订阅号
每天精选资源文章推送

Copyright 2014-2026 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号