0

0

一文看懂基础模型的定义和工作原理

WBOY

WBOY

发布时间:2023-07-12 15:13:44

|

1381人浏览过

|

来源于51CTO.COM

转载

译者 | 布加迪

审校 | 重楼

一、基础模型的定义

☞☞☞AI 智能聊天, 问答助手, AI 智能搜索, 免费无限量使用 DeepSeek R1 模型☜☜☜

一文看懂基础模型的定义和工作原理

基础模型是立足于大量数据上的预训练机器学习模型。这是人工智能AI领域的突破性进展。由于能够从大量数据中学习并适应各种任务,因此基础模型充当了各种AI应用的基。这些模型是庞大的数据集预先训练的,经过微调后可以执行特定的任务,从而使它们具有用途广、效率高的优点

典型的基础模型包括用于自然语言处理的GPT-3和用于计算机视觉的CLIP我们在这篇文章探讨基础模型是什么、它们如何工作及它们对不断发展的AI领域的影响。

二、基础模型如何工作?

GPT-4之类的基础模型工作原理是,拿庞大的数据资料库预训练一个大型的神经网络,然后针对特定任务对模型进行微调,使它们能够用针对特定任务的少量训练数据执行广泛的语言任务。

预训练和微调

  • 大规模无监督数据进行预训练基础模型一开始从大量无监督数据中学习,比如来自互联网的文本或一大堆图像这个预训练阶段使模型能够掌握数据中的底层结构、模式以及关系,帮助它们构建强大的知识库。
  • 拿针对特定任务的标记数据进行微调在预训练之后,使用针对特定任务(比如情感分析或对象检测定制的更小标记数据集对基础模型进行微调。这个微调过程允许模型磨练技能,并针对目标任务提供高性能。

迁移学习和零样本学习能力

基础模型在迁移学习方面表现出色,这是指它们能够将从一个任务中获得的知识运用到新的相关任务。一些模型甚至展示样本学习能力,这意味着它们可以在未经任何微调的情况下处理任务,完全依赖在预训练期间获得的知识。

Playground AI
Playground AI

AI图片生成和修图

下载

模型架构和技术

  • NLP中的Transformer(比如GPT-3BERT):Transformer通过其创新的架构彻底改变了自然语言处理NLP这种架构允许高效灵活地处理语言数据。典型的NLP基础模型GPT-3擅长生成连贯一致的文本)和BERT处理各种语言理解任务表现出色
  • 视觉Transformer和多模态模型(比如CLIPDALL-E):在计算机视觉领域,视觉Transformer已经成为处理图像数据的一种高效方法。CLIP一种典型的多模态基础模型,能够理解图像和文本。另一多模态模型DALL-E展示了从文本描述生成图像的能力,表明基础模型结合NLP和计算机视觉技术的潜力。

三、基础模型的应用

自然语言处理

  • 情感分析:事实已证明,基础模型可以高效处理情感分析任务它们基于情感对文本进行分类,比如积极的、消极的或中立的情感。该功能已广泛应用于社交媒体监控、客户反馈分析和市场研究等领域。
  • 文本摘要这些模型还可以生成长文档或文章的简明摘要,使用户更容易快速掌握要点。文本摘要应用广泛,包括新闻聚合、内容管理和研究协助。

计算机视觉

  • 对象检测:基础模型擅长识别和定位图像中的对象。这种能力在自动驾驶汽车、安全和监控系统以及机器人等应用领域尤其有价值,精确的实时对象检测在这类应用领域至关重要。
  • 图像分类:另常见的应用是图像分类,基础模型根据内容对图像进行分类。该功能已应用于各种领域,从组织庞大的照片到使用医学成像数据诊断疾病,不一而足

多模态任务

  • 图像字幕通过对文本和图像的理解,多模态基础模型可以为图像生成描述性字幕。图像字幕在面向视障用户、内容管理系统和教材料的可访问性工具中具有潜在的用途。
  • 视觉问题回答基础模型还可以处理视觉问题回答任务,其中它们提供关于图像内容的问题的答案。这种能力为客户支持、交互式学习环境和智能搜索引擎等应用带来了新的可能性。

未来展望及发展

  • 模型压缩和效率方面进展:随着基础模型变得越来越庞大、越来越复杂,研究人员在探索压缩和优化模型的方法,以便能够部署在资源有限的设备上,并减少能耗
  • 解决偏和公平问题改良版技术:解决基础模型中的偏对于确保公平道德的AI应用至关重要。未来研究可能会侧重于研发识别、测量和减训练数据和模型行为中偏误的方法
  • 开源基础模型的协作努力:AI社区越来越多加强合作创建开源基础模型,促进协作、知识共享和广泛获取尖端AI技术

四、结论

基础模型是AI领域的重大进步,它带来了能够运用于各个领域的多用途高性能模型,比如NLP、计算机视觉和多模态任务。

随着基础模型不断发展,它们可能会重塑AI研究,并推动众多领域的创新。它们在支持新应用和解决复杂问题方面大有潜力,未来AI会越来越融入我们的生活

原文标题:What Are Foundation Models and How Do They Work?,作者:Saturn Cloud

相关专题

更多
堆和栈的区别
堆和栈的区别

堆和栈的区别:1、内存分配方式不同;2、大小不同;3、数据访问方式不同;4、数据的生命周期。本专题为大家提供堆和栈的区别的相关的文章、下载、课程内容,供大家免费下载体验。

392

2023.07.18

堆和栈区别
堆和栈区别

堆(Heap)和栈(Stack)是计算机中两种常见的内存分配机制。它们在内存管理的方式、分配方式以及使用场景上有很大的区别。本文将详细介绍堆和栈的特点、区别以及各自的使用场景。php中文网给大家带来了相关的教程以及文章欢迎大家前来学习阅读。

572

2023.08.10

人工智能在生活中的应用
人工智能在生活中的应用

人工智能在生活中的应用有语音助手、无人驾驶、金融服务、医疗诊断、智能家居、智能推荐、自然语言处理和游戏设计等。本专题为大家提供人工智能相关的文章、下载、课程内容,供大家免费下载体验。

411

2023.08.17

人工智能的基本概念是什么
人工智能的基本概念是什么

人工智能的英文缩写为AI,是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学;该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。本专题为大家提供相关的文章、下载、课程内容,供大家免费下载体验。

305

2024.01.09

人工智能不能取代人类的原因是什么
人工智能不能取代人类的原因是什么

人工智能不能取代人类的原因包括情感与意识、创造力与想象力、伦理与道德、社会交往与沟通能力、灵活性与适应性、持续学习和自我提升等。本专题为大家提供相关的文章、下载、课程内容,供大家免费下载体验。

628

2024.09.10

Python 人工智能
Python 人工智能

本专题聚焦 Python 在人工智能与机器学习领域的核心应用,系统讲解数据预处理、特征工程、监督与无监督学习、模型训练与评估、超参数调优等关键知识。通过实战案例(如房价预测、图像分类、文本情感分析),帮助学习者全面掌握 Python 机器学习模型的构建与实战能力。

34

2025.10.21

什么是搜索引擎
什么是搜索引擎

搜索引擎是一种互联网工具,用于帮助用户在网上查找信息。搜索引擎的目标是提供最准确、最有价值的搜索结果,使用户能够快速找到所需的信息。本专题为大家提供搜索引擎相关的各种文章、以及下载和课程。

373

2023.08.02

有哪些目录搜索引擎
有哪些目录搜索引擎

目录搜索引擎有Google、Bing、Yahoo、Baidu、DuckDuckGo等。想了解更多目录搜索引擎的相关内容,可以阅读本专题下面的文章。

2362

2023.11.06

Java JVM 原理与性能调优实战
Java JVM 原理与性能调优实战

本专题系统讲解 Java 虚拟机(JVM)的核心工作原理与性能调优方法,包括 JVM 内存结构、对象创建与回收流程、垃圾回收器(Serial、CMS、G1、ZGC)对比分析、常见内存泄漏与性能瓶颈排查,以及 JVM 参数调优与监控工具(jstat、jmap、jvisualvm)的实战使用。通过真实案例,帮助学习者掌握 Java 应用在生产环境中的性能分析与优化能力。

3

2026.01.20

热门下载

更多
网站特效
/
网站源码
/
网站素材
/
前端模板

精品课程

更多
相关推荐
/
热门推荐
/
最新课程
麻省理工大佬Python课程
麻省理工大佬Python课程

共34课时 | 5.2万人学习

国外Web开发全栈课程全集
国外Web开发全栈课程全集

共12课时 | 1.0万人学习

关于我们 免责申明 举报中心 意见反馈 讲师合作 广告合作 最新更新
php中文网:公益在线php培训,帮助PHP学习者快速成长!
关注服务号 技术交流群
PHP中文网订阅号
每天精选资源文章推送

Copyright 2014-2026 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号