0

0

BLIP-2、InstructBLIP稳居前三!十二大模型,十六份榜单,全面测评「多模态大语言模型」

王林

王林

发布时间:2023-07-13 14:33:06

|

1690人浏览过

|

来源于51CTO.COM

转载

多模态大语言模型(Multimodal Large Language Model,MLLM)依赖于LLM丰富的知识储备以及强大的推理和泛化能力来解决多模态问题,目前已经涌现出一些令人惊叹的能力,比如看图写作和看图写代码。

但仅根据这些样例很难充分反映MLLM的性能,目前仍然缺乏对MLLM的全面评测。

为此,腾讯优图实验室联合厦门大学在新建的评测基准MM上首次对现有12种开源MLLM模型进行了全面定量评测并公布了16个排行榜,包含感知和认知两个总榜以及14个子榜单:

☞☞☞AI 智能聊天, 问答助手, AI 智能搜索, 免费无限量使用 DeepSeek R1 模型☜☜☜

BLIP-2、InstructBLIP稳居前三!十二大模型,十六份榜单,全面测评「多模态大语言模型」

论文链接:https://arxiv.org/pdf/2306.13394.pdf

项目链接:https://github.com/BradyFU/Awesome-Multimodal-Large-Language-Models/tree/Evaluation

Fireflies.ai
Fireflies.ai

自动化会议记录和笔记工具,可以帮助你的团队记录、转录、搜索和分析语音对话。

下载

现有MLLM的定量评测方法主要分为三类,但都存在一定的局限导致难以全面反映其性能。

第一类方法在传统的公开数据集上进行评测,例如图像描述(Image Caption)和视觉问答(VQA)数据集。

但一方面这些传统数据集可能难以反映MLLM涌现的新能力,另一方面由于大模型时代的训练集都不再统一,因此难以保证这些评测数据集没有被其他MLLM训练过。

第二种方式是收集新的数据进行开放式评测,但这些数据要么未公开[1],要么数量太少(仅有50张)[2]。

第三种方式聚焦于MLLM的某个特定方面,比如物体幻觉(Object Hallucination)[3]或者对抗鲁棒性[4],无法做全面评测。

目前亟需一个全面的评测基准来匹配MLLM的快速发展。研究人员认为一个通用的全面评测基准应该具有以下特点:

(1)应该覆盖尽可能多的范围,包括感知和认知能力。前者指的是识别物体,包括其存在性、数量、位置和颜色等。后者指的是综合感知信息以及LLM中的知识来进行更复杂的推理。其中前者是后者的基础。

(2)数据或者标注应该尽可能避免采用已有的公开数据集,以减少数据泄露的风险。

(3)指令应该尽可能简洁并且符合人类的认知习惯。不同的指令设计可能会极大影响模型的输出,但所有的模型都在统一的简洁指令下进行评测可以保证公平性。一个好的MLLM模型应该具备泛化到这种简洁指令上的能力,避免陷入Prompt Engineering。

(4)MLLM在该简洁指令下的输出应该是直观的并且便于定量统计。MLLM开放式的回答给量化统计提出了很大挑战。现有方法倾向于使用GPT或者人工打分,但可能面临着不准确和主观性的问题。

BLIP-2、InstructBLIP稳居前三!十二大模型,十六份榜单,全面测评「多模态大语言模型」

图1. MME评测基准示例。每张图片对应两个问题,答案分别为Yes[Y]和No[N]。问题加上「Please answer yes or no」共同构成指令。

基于以上原因,一个新的MLLM评测基准MME被构建出来,它同时具备以上四个特点:

1. MME同时评测感知和认知能力。除了OCR外,感知能力还包括粗粒度和细粒度目标识别。前者识别物体的存在性、数量、位置和颜色。后者识别电影海报、名人、场景、地标和艺术品。认知能力包括常识推理、数值计算、文本翻译和代码推理。总的子任务数达到14种,如图1所示。

2. MME中所有的指令-答案对都是人工构建的。对于少量使用到的公开数据集,仅使用其图像而没有依赖其原始标注。同时,研究人员也尽力通过人工拍摄和图像生成的方式来采集数据。

3. MME的指令被设计得尽量简洁以避免Prompt Engineering对模型输出的影响。研究人员再次申明一个好的MLLM应该泛化到这种简洁且使用频繁的指令,这对所有模型都是公平的。图1中显示了每个子任务的指令。

4. 得益于指令设计「Please answer yes or no」,可以方便地根据模型输出的「Yes」或「No」进行定量统计,这种方式可以同时保证准确性和客观性。值得注意的是,研究人员也尝试过设计选择题的指令,但发现当前的MLLM还难以跟随这类较为复杂的指令。

研究人员一共评测了12种先进的MLLM模型,包括BLIP-2 [5]、LLaVA [6]、MiniGPT-4 [7]、 mPLUG-Owl [2]、LLaMA-Adapter-v2 [8]、Otter [9]、Multimodal-GPT [10]、InstructBLIP [11]、 VisualGLM-6B [12], PandaGPT [13], ImageBind-LLM [14] 和 LaVIN [15]。

其中,统计指标有三种,包括Accuracy,Accuracy+和Score。其中对于每个任务,Accuracy是基于问题统计而来,Accuracy+是基于图片统计而来(图片对应的两个问题都需要回答正确),Score是Accuracy和Accuracy+的和。

感知的总分为10种感知类子任务Score的总和,认知的总分是4种认知类任务Score的总和。具体详见项目链接。

12种模型在14种子任务上的测试比较如图2所示:

BLIP-2、InstructBLIP稳居前三!十二大模型,十六份榜单,全面测评「多模态大语言模型」

图2. 12种模型在14种子任务上的比较。每种子任务的满分为200分。

一共16个榜单,包括感知类和认知类的总榜单以及14个子任务的榜单也已发布。两个总榜单分别如图3和图4所示,值得注意的是BLIP-2和InstructBLIP在这两个榜单中都保持在前三。

BLIP-2、InstructBLIP稳居前三!十二大模型,十六份榜单,全面测评「多模态大语言模型」图片

图3.感知类任务总榜单

BLIP-2、InstructBLIP稳居前三!十二大模型,十六份榜单,全面测评「多模态大语言模型」

图4.认知类任务总榜单

BLIP-2、InstructBLIP稳居前三!十二大模型,十六份榜单,全面测评「多模态大语言模型」

图5.所有榜单

另外研究人员也总结了MLLM模型在实验中暴露的一些通用问题,如图6所示,希望可以为后续的模型优化提供指导。

BLIP-2、InstructBLIP稳居前三!十二大模型,十六份榜单,全面测评「多模态大语言模型」图片

图6. MLLM暴露的通用问题。[Y]/[N]表示真实的答案是Yes/No。[R]是MLLM生成的答案。

第一个问题是不跟随指令。

尽管已经采用了非常简洁的指令设计,但仍然有MLLM自由回答问题而不是跟随指令。

如图6中的第一行所示,指令已经申明「Please answer yes or no」,但MLLM仅给出了一个陈述性回答。如果在回答的开头没有出现「Yes」或者「No」,都判定该回答错误。一个好的MLLM,尤其是经过指令微调后,应该能够泛化到这种简单的指令上。

第二个问题是缺乏感知能力。

如图6中的第二行所示,MLLM错误地识别了第一张图片中香蕉的数量和第二张图片中的数字,导致回答错误。研究人员也注意到感知的性能很容易受到指令变化的影响,因为同一张图的两个指令只相差一个单词,但导致了完全不同的感知结果。

第三个问题是缺乏推理能力。

如图6中的第三行所示,从红色的文字可以看出MLLM已经知道了第一张图片不是一个办公场所,但仍然给出了一个错误的回答「Yes」。

相似地,在第二张图片中,MLLM已经计算得到了正确的算数结果,但最终也给出了错误的答案。添加思维链Prompt,例如「Let’s think step by step」也许能带来更好的效果。期待这方面有更深入的研究。

第四个问题跟随指令的物体幻视。如图6中的第四行所示,当指令中含有图片中不存在的物体时,MLLM将会幻想该物体存在并最终给出一个「Yes」的回答。

这种总是回答「Yes」的方式导致了Accuracy接近于50%,Accuracy+接近于0。这表明抑制目标幻视的重要性,并且也需要进一步思考MLLM生成的答案的可靠性。

相关专题

更多
excel制作动态图表教程
excel制作动态图表教程

本专题整合了excel制作动态图表相关教程,阅读专题下面的文章了解更多详细教程。

20

2025.12.29

freeok看剧入口合集
freeok看剧入口合集

本专题整合了freeok看剧入口网址,阅读下面的文章了解更多网址。

65

2025.12.29

俄罗斯搜索引擎Yandex最新官方入口网址
俄罗斯搜索引擎Yandex最新官方入口网址

Yandex官方入口网址是https://yandex.com;用户可通过网页端直连或移动端浏览器直接访问,无需登录即可使用搜索、图片、新闻、地图等全部基础功能,并支持多语种检索与静态资源精准筛选。本专题为大家提供相关的文章、下载、课程内容,供大家免费下载体验。

197

2025.12.29

python中def的用法大全
python中def的用法大全

def关键字用于在Python中定义函数。其基本语法包括函数名、参数列表、文档字符串和返回值。使用def可以定义无参数、单参数、多参数、默认参数和可变参数的函数。本专题为大家提供相关的文章、下载、课程内容,供大家免费下载体验。

16

2025.12.29

python改成中文版教程大全
python改成中文版教程大全

Python界面可通过以下方法改为中文版:修改系统语言环境:更改系统语言为“中文(简体)”。使用 IDE 修改:在 PyCharm 等 IDE 中更改语言设置为“中文”。使用 IDLE 修改:在 IDLE 中修改语言为“Chinese”。本专题为大家提供相关的文章、下载、课程内容,供大家免费下载体验。

16

2025.12.29

C++的Top K问题怎么解决
C++的Top K问题怎么解决

TopK问题可通过优先队列、partial_sort和nth_element解决:优先队列维护大小为K的堆,适合流式数据;partial_sort对前K个元素排序,适用于需有序结果且K较小的场景;nth_element基于快速选择,平均时间复杂度O(n),效率最高但不保证前K内部有序。本专题为大家提供相关的文章、下载、课程内容,供大家免费下载体验。

12

2025.12.29

php8.4实现接口限流的教程
php8.4实现接口限流的教程

PHP8.4本身不内置限流功能,需借助Redis(令牌桶)或Swoole(漏桶)实现;文件锁因I/O瓶颈、无跨机共享、秒级精度等缺陷不适用高并发场景。本专题为大家提供相关的文章、下载、课程内容,供大家免费下载体验。

134

2025.12.29

抖音网页版入口在哪(最新版)
抖音网页版入口在哪(最新版)

抖音网页版可通过官网https://www.douyin.com进入,打开浏览器输入网址后,可选择扫码或账号登录,登录后同步移动端数据,未登录仅可浏览部分推荐内容。本专题为大家提供相关的文章、下载、课程内容,供大家免费下载体验。

63

2025.12.29

快手直播回放在哪看教程
快手直播回放在哪看教程

快手直播回放需主播开启功能才可观看,主要通过三种路径查看:一是从“我”主页进入“关注”标签再进主播主页的“直播”分类;二是通过“历史记录”中的“直播”标签页找回;三是进入“个人信息查阅与下载”里的“直播回放”选项。本专题为大家提供相关的文章、下载、课程内容,供大家免费下载体验。

18

2025.12.29

热门下载

更多
网站特效
/
网站源码
/
网站素材
/
前端模板

精品课程

更多
相关推荐
/
热门推荐
/
最新课程
Django 教程
Django 教程

共28课时 | 2.6万人学习

Go 教程
Go 教程

共32课时 | 3.1万人学习

TypeScript 教程
TypeScript 教程

共19课时 | 1.8万人学习

关于我们 免责申明 举报中心 意见反馈 讲师合作 广告合作 最新更新
php中文网:公益在线php培训,帮助PHP学习者快速成长!
关注服务号 技术交流群
PHP中文网订阅号
每天精选资源文章推送

Copyright 2014-2025 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号