0

0

GPT-4使用混合大模型?研究证明MoE+指令调优确实让大模型性能超群

王林

王林

发布时间:2023-07-17 16:57:25

|

1407人浏览过

|

来源于51CTO.COM

转载

自 GPT-4 问世以来,人们一直惊艳于它强大的涌现能力,包括出色的语言理解能力、生成能力、逻辑推理能力等等。这些能力让 GPT-4 成为机器学习领域最前沿的模型之一。然而,OpenAI 至今未公开 GPT-4 的任何技术细节。

上个月,乔治・霍兹(George Hotz)在接受一家名为 Latent Space 的 AI 技术播客的采访时提到了 GPT-4,并称 GPT-4 其实是一个混合模型。具体来说,乔治・霍兹称 GPT-4 采用由 8 个专家模型组成的集成系统,每个专家模型都有 2200 亿个参数(比 GPT-3 的 1750 亿参数量略多一些),并且这些模型经过了针对不同数据和任务分布的训练。

☞☞☞AI 智能聊天, 问答助手, AI 智能搜索, 免费无限量使用 DeepSeek R1 模型☜☜☜

GPT-4使用混合大模型?研究证明MoE+指令调优确实让大模型性能超群

Latent Space 的采访内容。

这或许只是乔治・霍兹的一种推测,但这种模式确实有一定的合理性。最近,由来自谷歌、UC 伯克利、MIT 等机构的研究者联合发表的一篇论文证实:混合专家模型(MoE)与指令调优的结合能够让大型语言模型(LLM)的性能大幅提升。

GPT-4使用混合大模型?研究证明MoE+指令调优确实让大模型性能超群图片

论文地址:https://arxiv.org/pdf/2305.14705.pdf

稿定AI
稿定AI

拥有线稿上色优化、图片重绘、人物姿势检测、涂鸦完善等功能

下载

稀疏混合专家模型是一种特殊的神经网络架构,可以在不增加推理成本的情况下,为大型语言模型(LLM)增加可学习的参数。指令调优(instruction tuning)是一种训练 LLM 遵循指令的技术。该研究发现 MoE 模型比密集模型更能从指令调优中获益,因此提出将 MoE 和指令调优结合起来。

该研究在三种实验设置下进行了实证研究,包括

  • 在没有指令调优的情况下在单个下游任务进行直接微调;
  • 指令调优后对下游任务进行 in-context 少样本或零样本泛化;
  • 指令调优后对单个下游任务进行进一步微调。

在第一种情况下,MoE 模型总体上不如具有相同计算能力的密集模型。然而,随着指令调优的引入(第二和第三种情况),FLAN-MoE_32B(Fine-tuned LAnguage Net,简写为 Flan,是一种经过指令调优的模型,Flan-MoE 即为指令调优 MoE)在四个基准任务上性能超过了 FLAN-PALM_62B,却只用了三分之一的 FLOPs。

如下图所示,在使用指令调优前,MoE→FT 不如 T5→FT。指令调优后,Flan-MoE→FT 优于 Flan-T5→FT。MoE 从指令调优中获得的收益 (+15.6) 大于密集模型 (+10.2):

GPT-4使用混合大模型?研究证明MoE+指令调优确实让大模型性能超群图片

看来 GPT-4 采用混合模型还是有点根据的,MoE 确实能够从指令调优中获得更大的收益:

GPT-4使用混合大模型?研究证明MoE+指令调优确实让大模型性能超群图片

方法概述

研究者在 FLAN-MOE (是一组经过指令微调的稀疏混合专家模型)模型中使用了稀疏激活 MoE(Mixture-of-Experts)。此外,他们还用 MoE 层替换了其他 Transformer 层的前馈组件。

每个 MoE 层可理解为一个「专家」,然后,使用 softmax 激活函数对这些专家进行建模,得到一个概率分布。

尽管每个 MoE 层有很多参数,但专家是稀疏激活的。这意味着对于给定的输入 token,只使用有限的专家子集就能完成任务,从而为模型提供了更大的容量。

对于具有 E 个专家的 MoE 层,这实际上提供了 O (E^2) 种不同的前馈网络组合,从而实现了更大的计算灵活性。


由于 FLAN-MoE 是经过指令调优的模型,因而指令调优非常重要,该研究在 FLAN 集合数据集的基础上对 FLAN-MOE 进行微调。此外,该研究将每个 FLAN-MOE 的输入序列长度调整为 2048,输出长度调整为 512。

实验与分析

平均而言,在不增加任何额外计算的情况下,Flan-MoE 在所有模型尺度上都优于密集的同类产品 (Flan-T5)。

GPT-4使用混合大模型?研究证明MoE+指令调优确实让大模型性能超群图片

专家数量。图 4 显示,随着专家数量的增加,初始时,模型受益于更丰富的专门子网络,每个子网络能够处理问题空间中的不同任务或方面。这种方式使得 MoE 在处理复杂任务时具有很强的适应性和效率,从而整体上改善性能。然而,随着专家数量的不断增加,模型性能增益开始减少,最终达到饱和点。

GPT-4使用混合大模型?研究证明MoE+指令调优确实让大模型性能超群图片

图 3 和表 1 详细研究了不同的路由决策如何影响指令调优性能:通过 FLAN-Switch 和 FLAN-GS 策略之间的比较可以得出,激活更多的专家会在四个基准测试中提高性能。在这些基准测试中,MMLU-Direct 模型显示出最显著的改进,对于 BASE/LARGE 尺寸的模型,从 38.0% 增加到 39.9%。

值得注意的是,与等效容量的密集模型相比,指令调优显著放大了 MoE 模型在保留 MMLU、BBH 和内部 QA 和推理基准测试方面的性能。对于较大的 MoE 模型,这些优势进一步放大。例如,指令调优使 ST_32B 的性能提升了 45.2%,而对于 FLAN-PALM_62B,这种改进相对较小,约为 6.6%。

GPT-4使用混合大模型?研究证明MoE+指令调优确实让大模型性能超群

当进行模型扩展时,Flan-MoE (Flan-ST-32B) 优于 Flan-PaLM-62B 。

GPT-4使用混合大模型?研究证明MoE+指令调优确实让大模型性能超群图片

此外,该研究通过 freeze 给定模型的门控函数(gating function)、专家模块和 MoE 参数进行了一些分析实验。如下表 2 所示,实验结果表明,freeze 专家模块或 MoE 组件对模型性能有负面影响。

GPT-4使用混合大模型?研究证明MoE+指令调优确实让大模型性能超群

相反,freeze 门控函数会使模型性能略有改善,尽管并不明显。研究者推测这一观察结果与 FLAN-MOE 的欠拟合有关。该研究还进行了消融实验来探究下图 5 描述了微调数据效率消融研究。

GPT-4使用混合大模型?研究证明MoE+指令调优确实让大模型性能超群

最后,为了比较直接对 MoE 进行微调和 FLAN-MOE 之间的差距,该研究对单任务微调的 MoE、单任务微调的 FLAN-MoE 和密集模型进行了实验,结果如下图 6 所示:

GPT-4使用混合大模型?研究证明MoE+指令调优确实让大模型性能超群

感兴趣的读者可以阅读论文原文,了解更多研究内容。

相关文章

数码产品性能查询
数码产品性能查询

该软件包括了市面上所有手机CPU,手机跑分情况,电脑CPU,电脑产品信息等等,方便需要大家查阅数码产品最新情况,了解产品特性,能够进行对比选择最具性价比的商品。

下载

本站声明:本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn

相关专题

更多
Java JVM 原理与性能调优实战
Java JVM 原理与性能调优实战

本专题系统讲解 Java 虚拟机(JVM)的核心工作原理与性能调优方法,包括 JVM 内存结构、对象创建与回收流程、垃圾回收器(Serial、CMS、G1、ZGC)对比分析、常见内存泄漏与性能瓶颈排查,以及 JVM 参数调优与监控工具(jstat、jmap、jvisualvm)的实战使用。通过真实案例,帮助学习者掌握 Java 应用在生产环境中的性能分析与优化能力。

13

2026.01.20

PS使用蒙版相关教程
PS使用蒙版相关教程

本专题整合了ps使用蒙版相关教程,阅读专题下面的文章了解更多详细内容。

60

2026.01.19

java用途介绍
java用途介绍

本专题整合了java用途功能相关介绍,阅读专题下面的文章了解更多详细内容。

84

2026.01.19

java输出数组相关教程
java输出数组相关教程

本专题整合了java输出数组相关教程,阅读专题下面的文章了解更多详细内容。

39

2026.01.19

java接口相关教程
java接口相关教程

本专题整合了java接口相关内容,阅读专题下面的文章了解更多详细内容。

10

2026.01.19

xml格式相关教程
xml格式相关教程

本专题整合了xml格式相关教程汇总,阅读专题下面的文章了解更多详细内容。

13

2026.01.19

PHP WebSocket 实时通信开发
PHP WebSocket 实时通信开发

本专题系统讲解 PHP 在实时通信与长连接场景中的应用实践,涵盖 WebSocket 协议原理、服务端连接管理、消息推送机制、心跳检测、断线重连以及与前端的实时交互实现。通过聊天系统、实时通知等案例,帮助开发者掌握 使用 PHP 构建实时通信与推送服务的完整开发流程,适用于即时消息与高互动性应用场景。

17

2026.01.19

微信聊天记录删除恢复导出教程汇总
微信聊天记录删除恢复导出教程汇总

本专题整合了微信聊天记录相关教程大全,阅读专题下面的文章了解更多详细内容。

157

2026.01.18

高德地图升级方法汇总
高德地图升级方法汇总

本专题整合了高德地图升级相关教程,阅读专题下面的文章了解更多详细内容。

163

2026.01.16

热门下载

更多
网站特效
/
网站源码
/
网站素材
/
前端模板

精品课程

更多
相关推荐
/
热门推荐
/
最新课程
Django 教程
Django 教程

共28课时 | 3.3万人学习

Go 教程
Go 教程

共32课时 | 4万人学习

TypeScript 教程
TypeScript 教程

共19课时 | 2.3万人学习

关于我们 免责申明 举报中心 意见反馈 讲师合作 广告合作 最新更新
php中文网:公益在线php培训,帮助PHP学习者快速成长!
关注服务号 技术交流群
PHP中文网订阅号
每天精选资源文章推送

Copyright 2014-2026 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号