0

0

使用Python中的Tensorflow预测燃油效率

PHPz

PHPz

发布时间:2023-08-25 14:41:06

|

1725人浏览过

|

来源于tutorialspoint

转载

使用python中的tensorflow预测燃油效率

预测燃油效率对于优化车辆性能和减少碳排放至关重要,这可以使用 Python 库 Tensorflow 轻松预测。在本文中,我们将探讨如何利用流行的机器学习库 Tensorflow 的强大功能,使用 Python 来预测燃油效率。通过基于 Auto MPG 数据集构建预测模型,我们可以准确估计车辆的燃油效率。让我们深入了解在 Python 中利用 Tensorflow 进行准确燃油效率预测的过程。

自动 MPG 数据集

为了准确预测燃油效率,我们需要可靠的数据集。 Auto MPG 数据集源自 UCI 机器学习存储库,为我们的模型提供了必要的信息。它包含各种属性,例如气缸数量、排量、重量、马力、加速度、原产地和型号年份。这些属性充当特征,而燃油效率(以每加仑英里数或 MPG 为单位衡量)充当标签。通过分析该数据集,我们可以训练模型识别模式并根据相似的车辆特征进行预测。

准备数据集

在构建预测模型之前,我们需要准备数据集。这涉及处理缺失值和标准化特征。缺失值可能会破坏训练过程,因此我们将它们从数据集中删除。对马力和重量等特征进行标准化可确保每个特征都处于相似的范围内。这一步至关重要,因为具有大数值范围的特征可以主导模型的学习过程。标准化数据集可确保在训练期间公平对待所有特征。

如何使用 TensorFlow 预测燃油效率?

以下是我们使用 Tensorflow 预测燃油效率时将遵循的步骤 -

立即学习Python免费学习笔记(深入)”;

  • 导入必要的库 - 我们导入tensorflow、Keras、layers 和 pandas。

  • 加载 Auto MPG 数据集。我们还指定列名称并处理任何缺失值。

  • 将数据集分为特征和标签 - 我们将数据集分为两部分 - 特征(输入变量)和标签(输出变量)。

  • 标准化特征 - 我们使用最小-最大缩放来标准化特征。

  • 数据集分为训练集和测试集。

  • 定义模型架构 - 我们定义一个具有三个密集层的简单顺序模型,其中每层有 64 个神经元并使用 ReLU 激活函数。

    雪鸮AI
    雪鸮AI

    高效便捷的智能绘图辅助工具,一键生成高质量效果图。

    下载
  • 编译模型 - 我们使用均方误差 (MSE) 损失函数和 RMSprop 优化器编译模型。

  • 训练模型 - 在训练集上进行 1000 个时期的模型训练,并指定验证分割为 0.2。

  • 评估模型 - 在测试集上进行模型评估并计算平均 MSE 以及燃油效率和绝对误差 (MAE)。

  • 计算新车的燃油效率 - 我们使用 pandas DataFrame 创建新车的功能。我们使用与原始数据集相同的缩放因子来标准化新车的特征。

  • 使用经过训练的模型预测新车的燃油效率。

  • 打印预测燃油效率 - 我们将新车的预测燃油效率打印到控制台

  • 打印测试指标 - 我们将测试 MAE 和 MSE 打印到控制台。

下面的程序使用 Tensorflow 构建神经网络模型,用于根据 Auto MPG 数据集预测燃油效率。

示例

# Import necessary libraries
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers
import pandas as pd

# Load the Auto MPG dataset
url = "https://archive.ics.uci.edu/ml/machine-learning-databases/auto-mpg/auto-mpg.data"
column_names = ['MPG','Cylinders','Displacement','Horsepower','Weight',
   'Acceleration', 'Model Year', 'Origin']
raw_dataset = pd.read_csv(url, names=column_names,
   na_values='?', comment='\t', sep=' ', skipinitialspace=True)

# Drop missing values
dataset = raw_dataset.dropna()

# Separate the dataset into features and labels
cfeatures = dataset.drop('MPG', axis=1)
labels = dataset['MPG']

# Normalize the features using min-max scaling
normalized_features = (cfeatures - cfeatures.min()) / (cfeatures.max() - cfeatures.min())

# Split the dataset into training and testing sets
train_features = normalized_features[:300]
test_features = normalized_features[300:]
train_labels = labels[:300]
test_labels = labels[300:]

# Define the model architecture for this we will use sequential API of the keras
model1 = keras.Sequential([
   layers.Dense(64, activation='relu', input_shape=[len(train_features.keys())]),
   layers.Dense(64, activation='relu'),
   layers.Dense(1)
])
#if you want summary of the model’s architecture you can use the code: model1.summary()

# Model compilation
optimizer = tf.keras.optimizers.RMSprop(0.001)
model1.compile(loss='mse', optimizer=optimizer, metrics=['mae', 'mse'])

# Train the model
Mhistory = model1.fit(
   train_features, train_labels,
   epochs=1000, validation_split = 0.2, verbose=0)

# Evaluate the model on the test set
test_loss, test_mae, test_mse = model1.evaluate(test_features, test_labels)
# Train the model
model1.fit(train_features, train_labels, epochs=1000, verbose=0)

# Calculation of the fuel efficiency for a new car
new_car_features = pd.DataFrame([[4, 121, 110, 2800, 15.4, 81, 3]], columns=column_names[1:])

normalized_new_car_features = (new_car_features - cfeatures.min()) / (cfeatures.max() - cfeatures.min())
fuel_efficiencyc = model1.predict(normalized_new_car_features)

# Print the test metrics
print("Test MAE:", test_mae)
print("Test MSE:", test_mse)
print("Predicted Fuel Efficiency:", fuel_efficiencyc[0][0])

输出

C:\Users\Tutorialspoint>python image.py
3/3 [==============================] - 0s 2ms/step - loss: 18.8091 - mae: 3.3231 - mse: 18.8091
1/1 [==============================] - 0s 90ms/step
Test MAE: 3.3230929374694824
Test MSE: 18.80905532836914
Predicted Fuel Efficiency: 24.55885

结论

总之,使用 Python 中的 Tensorflow 来预测燃油效率是一个强大的工具,可以帮助制造商和消费者做出明智的决策。通过分析各种车辆特征并训练神经网络模型,我们可以准确预测燃油效率。

这些信息可以促进更节能的车辆的开发,减少对环境的影响并为消费者节省成本。 Tensorflow 的多功能性和易用性使其成为汽车行业追求提高燃油效率的宝贵资产。

相关文章

python速学教程(入门到精通)
python速学教程(入门到精通)

python怎么学习?python怎么入门?python在哪学?python怎么学才快?不用担心,这里为大家提供了python速学教程(入门到精通),有需要的小伙伴保存下载就能学习啦!

下载

本站声明:本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn

相关专题

更多
python开发工具
python开发工具

php中文网为大家提供各种python开发工具,好的开发工具,可帮助开发者攻克编程学习中的基础障碍,理解每一行源代码在程序执行时在计算机中的过程。php中文网还为大家带来python相关课程以及相关文章等内容,供大家免费下载使用。

741

2023.06.15

python打包成可执行文件
python打包成可执行文件

本专题为大家带来python打包成可执行文件相关的文章,大家可以免费的下载体验。

634

2023.07.20

python能做什么
python能做什么

python能做的有:可用于开发基于控制台的应用程序、多媒体部分开发、用于开发基于Web的应用程序、使用python处理数据、系统编程等等。本专题为大家提供python相关的各种文章、以及下载和课程。

755

2023.07.25

format在python中的用法
format在python中的用法

Python中的format是一种字符串格式化方法,用于将变量或值插入到字符串中的占位符位置。通过format方法,我们可以动态地构建字符串,使其包含不同值。php中文网给大家带来了相关的教程以及文章,欢迎大家前来阅读学习。

617

2023.07.31

python教程
python教程

Python已成为一门网红语言,即使是在非编程开发者当中,也掀起了一股学习的热潮。本专题为大家带来python教程的相关文章,大家可以免费体验学习。

1259

2023.08.03

python环境变量的配置
python环境变量的配置

Python是一种流行的编程语言,被广泛用于软件开发、数据分析和科学计算等领域。在安装Python之后,我们需要配置环境变量,以便在任何位置都能够访问Python的可执行文件。php中文网给大家带来了相关的教程以及文章,欢迎大家前来学习阅读。

547

2023.08.04

python eval
python eval

eval函数是Python中一个非常强大的函数,它可以将字符串作为Python代码进行执行,实现动态编程的效果。然而,由于其潜在的安全风险和性能问题,需要谨慎使用。php中文网给大家带来了相关的教程以及文章,欢迎大家前来学习阅读。

577

2023.08.04

scratch和python区别
scratch和python区别

scratch和python的区别:1、scratch是一种专为初学者设计的图形化编程语言,python是一种文本编程语言;2、scratch使用的是基于积木的编程语法,python采用更加传统的文本编程语法等等。本专题为大家提供scratch和python相关的文章、下载、课程内容,供大家免费下载体验。

705

2023.08.11

c++主流开发框架汇总
c++主流开发框架汇总

本专题整合了c++开发框架推荐,阅读专题下面的文章了解更多详细内容。

3

2026.01.09

热门下载

更多
网站特效
/
网站源码
/
网站素材
/
前端模板

精品课程

更多
相关推荐
/
热门推荐
/
最新课程
Sass 教程
Sass 教程

共14课时 | 0.7万人学习

HTML教程
HTML教程

共500课时 | 4.5万人学习

关于我们 免责申明 举报中心 意见反馈 讲师合作 广告合作 最新更新
php中文网:公益在线php培训,帮助PHP学习者快速成长!
关注服务号 技术交流群
PHP中文网订阅号
每天精选资源文章推送

Copyright 2014-2026 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号