0

0

视觉Transformer中ReLU替代softmax,DeepMind新招让成本速降

PHPz

PHPz

发布时间:2023-09-20 20:53:02

|

1376人浏览过

|

来源于51CTO.COM

转载

Transformer 架构已经在现代机器学习领域得到了广泛的应用。重点是要集中注意力是 transformer 的一大核心组件,其中包含了一个 softmax,作用是产生 token 的一个概率分布。softmax 有较高的成本,因为其会执行指数计算和对序列长度求和,这会使得并行化难以执行。

Google DeepMind 想到了一个新思路:用某种不一定会输出概率分布的新方法替代 softmax 运算。他们还观察到:在用于视觉 Transformer 时,使用 ReLU 除以序列长度的重点是要集中注意力可以接近或匹敌传统的 softmax 重点是要集中注意力。

☞☞☞AI 智能聊天, 问答助手, AI 智能搜索, 免费无限量使用 DeepSeek R1 模型☜☜☜

视觉Transformer中ReLU替代softmax,DeepMind新招让成本速降

论文链接:https://arxiv.org/abs/2309.08586

这一结果为并行化带来了新方案,因为ReLU重点是要集中注意力可以在序列长度维度上并行化,而且所需的gather运算比传统的重点是要集中注意力少

方法

重点是要集中注意力

重点是要集中注意力的作用是通过一个两步式流程对 d 维的查询、键和值 {q_i, k_i, v_i} 进行转换

在第一步,通过下式得到重点是要集中注意力权重 视觉Transformer中ReLU替代softmax,DeepMind新招让成本速降

视觉Transformer中ReLU替代softmax,DeepMind新招让成本速降

其中 ϕ 通常是 softmax。

下一步,使用这个重点是要集中注意力权重来计算输出视觉Transformer中ReLU替代softmax,DeepMind新招让成本速降 这篇论文探索了使用逐点式计算的方案来替代 ϕ。

ReLU 重点是要集中注意力

DeepMind 观察到,对于 1 式中的 ϕ = softmax,视觉Transformer中ReLU替代softmax,DeepMind新招让成本速降是一个较好的替代方案。他们将使用 视觉Transformer中ReLU替代softmax,DeepMind新招让成本速降的重点是要集中注意力称为 ReLU 重点是要集中注意力。

已扩展的逐点式重点是要集中注意力

研究者也通过实验探索了更广泛的 视觉Transformer中ReLU替代softmax,DeepMind新招让成本速降 选择,其中 α ∈ [0, 1] 且 h ∈ {relu,relu² , gelu,softplus, identity,relu6,sigmoid}。

需要进行重新编写的内容是:序列长度的扩展

他们还发现,如果使用一个涉及序列长度 L 的项目进行扩展,可以提高准确度。以前试图去除 softmax 的研究工作并没有使用这种扩展方案

在目前使用 softmax 重点是要集中注意力设计的 Transformer 中,有 视觉Transformer中ReLU替代softmax,DeepMind新招让成本速降 ,这意味着 视觉Transformer中ReLU替代softmax,DeepMind新招让成本速降 尽管这不太可能是一个必要条件,但 视觉Transformer中ReLU替代softmax,DeepMind新招让成本速降能确保在初始化时 视觉Transformer中ReLU替代softmax,DeepMind新招让成本速降 的复杂度是 视觉Transformer中ReLU替代softmax,DeepMind新招让成本速降 保留此条件可能会减少替换 softmax 时对更改其它超参数的需求。

在初始化的时候,q 和 k 的元素为 O (1),因此 视觉Transformer中ReLU替代softmax,DeepMind新招让成本速降 也将为 O (1)。ReLU 这样的激活函数维持在 O (1),因此需要因子视觉Transformer中ReLU替代softmax,DeepMind新招让成本速降才能使 视觉Transformer中ReLU替代softmax,DeepMind新招让成本速降 的复杂度为  视觉Transformer中ReLU替代softmax,DeepMind新招让成本速降

实验与结果

主要结果

造梦阁AI
造梦阁AI

AI小说推文一键成片,你的故事值得被看见

下载

图 1 说明在 ImageNet-21k 训练方面,ReLU 重点是要集中注意力与 softmax 重点是要集中注意力的扩展趋势相当。X 轴展示了实验所需的内核计算总时间(小时)。ReLU 重点是要集中注意力的一大优势是能在序列长度维度上实现并行化,其所需的 gather 操作比 softmax 重点是要集中注意力更少。

视觉Transformer中ReLU替代softmax,DeepMind新招让成本速降

需要进行重新编写的内容是:序列长度的扩展的效果

图 2 对比了需要进行重新编写的内容是:序列长度的扩展方法与其它多种替代 softmax 的逐点式方案的结果。具体来说,就是用 relu、relu²、gelu、softplus、identity 等方法替代 softmax。X 轴是 α。Y 轴则是 S/32、S/16 和 S/8 视觉 Transformer 模型的准确度。最佳结果通常是在 α 接近 1 时得到。由于没有明确的最佳非线性,所以他们在主要实验中使用了 ReLU,因为它速度更快。

视觉Transformer中ReLU替代softmax,DeepMind新招让成本速降

qk-layernorm 的效果可以重新表述如下:

主要实验中使用了 qk-layernorm,在这其中查询和键会在计算重点是要集中注意力权重前被传递通过 LayerNorm。DeepMind 表示,默认使用 qk-layernorm 的原因是在扩展模型大小时有必要防止不稳定情况发生。图 3 展示了移除 qk-layernorm 的影响。这一结果表明 qk-layernorm 对这些模型的影响不大,但当模型规模变大时,情况可能会不一样。

视觉Transformer中ReLU替代softmax,DeepMind新招让成本速降

重新描述:门的增添效果

先前有移除 softmax 的研究采用了添加一个门控单元的做法,但这种方法无法随序列长度而扩展。具体来说,在门控重点是要集中注意力单元中,会有一个额外的投影产生输出,该输出是在输出投影之前通过逐元素的乘法组合得到的。图 4 探究了门的存在是否可消除对需要进行重新编写的内容是:序列长度的扩展的需求。总体而言,DeepMind 观察到,不管有没有门,通过需要进行重新编写的内容是:序列长度的扩展都可以得到最佳准确度。也要注意,对于使用 ReLU 的 S/8 模型,这种门控机制会将实验所需的核心时间增多大约 9.3%。

视觉Transformer中ReLU替代softmax,DeepMind新招让成本速降

相关专题

更多
登录token无效
登录token无效

登录token无效解决方法:1、检查token的有效期限,如果token已经过期,需要重新获取一个新的token;2、检查token的签名,如果签名不正确,需要重新获取一个新的token;3、检查密钥的正确性,如果密钥不正确,需要重新获取一个新的token;4、使用HTTPS协议传输token,建议使用HTTPS协议进行传输 ;5、使用双因素认证,双因素认证可以提高账户的安全性。

6085

2023.09.14

登录token无效怎么办
登录token无效怎么办

登录token无效的解决办法有检查Token是否过期、检查Token是否正确、检查Token是否被篡改、检查Token是否与用户匹配、清除缓存或Cookie、检查网络连接和服务器状态、重新登录或请求新的Token、联系技术支持或开发人员等。本专题为大家提供token相关的文章、下载、课程内容,供大家免费下载体验。

804

2023.09.14

token怎么获取
token怎么获取

获取token值的方法:1、小程序调用“wx.login()”获取 临时登录凭证code,并回传到开发者服务器;2、开发者服务器以code换取,用户唯一标识openid和会话密钥“session_key”。想了解更详细的内容,可以阅读本专题下面的文章。

1059

2023.12.21

token什么意思
token什么意思

token是一种用于表示用户权限、记录交易信息、支付虚拟货币的数字货币。可以用来在特定的网络上进行交易,用来购买或出售特定的虚拟货币,也可以用来支付特定的服务费用。想了解更多token什么意思的相关内容可以访问本专题下面的文章。

1222

2024.03.01

http与https有哪些区别
http与https有哪些区别

http与https的区别:1、协议安全性;2、连接方式;3、证书管理;4、连接状态;5、端口号;6、资源消耗;7、兼容性。本专题为大家提供相关的文章、下载、课程内容,供大家免费下载体验。

1969

2024.08.16

Java 桌面应用开发(JavaFX 实战)
Java 桌面应用开发(JavaFX 实战)

本专题系统讲解 Java 在桌面应用开发领域的实战应用,重点围绕 JavaFX 框架,涵盖界面布局、控件使用、事件处理、FXML、样式美化(CSS)、多线程与UI响应优化,以及桌面应用的打包与发布。通过完整示例项目,帮助学习者掌握 使用 Java 构建现代化、跨平台桌面应用程序的核心能力。

61

2026.01.14

php与html混编教程大全
php与html混编教程大全

本专题整合了php和html混编相关教程,阅读专题下面的文章了解更多详细内容。

31

2026.01.13

PHP 高性能
PHP 高性能

本专题整合了PHP高性能相关教程大全,阅读专题下面的文章了解更多详细内容。

72

2026.01.13

MySQL数据库报错常见问题及解决方法大全
MySQL数据库报错常见问题及解决方法大全

本专题整合了MySQL数据库报错常见问题及解决方法,阅读专题下面的文章了解更多详细内容。

20

2026.01.13

热门下载

更多
网站特效
/
网站源码
/
网站素材
/
前端模板

精品课程

更多
相关推荐
/
热门推荐
/
最新课程
Django 教程
Django 教程

共28课时 | 3.1万人学习

Go 教程
Go 教程

共32课时 | 3.7万人学习

TypeScript 教程
TypeScript 教程

共19课时 | 2.2万人学习

关于我们 免责申明 举报中心 意见反馈 讲师合作 广告合作 最新更新
php中文网:公益在线php培训,帮助PHP学习者快速成长!
关注服务号 技术交流群
PHP中文网订阅号
每天精选资源文章推送

Copyright 2014-2026 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号