☞☞☞AI 智能聊天, 问答助手, AI 智能搜索, 免费无限量使用 DeepSeek R1 模型☜☜☜

对抗训练中的分布偏移问题,需要具体代码示例
摘要:在机器学习和深度学习任务中,分布偏移是一个普遍存在的问题。为了应对这一问题,研究者们提出了对抗训练(Adversarial Training)的方法。本文将介绍对抗训练中的分布偏移问题,并给出基于生成对抗网络(Generative Adversarial Networks, GANs)的代码示例。
对抗训练的过程可以简化为以下几个步骤:
(1)训练生成器网络:生成器网络接收一个随机噪声向量作为输入,并生成一个与测试集数据相似的样本。
(2)训练判别器网络:判别器网络接收一个样本作为输入,并分类为来自训练集或测试集。
(3)反向传播更新生成器网络:生成器网络的目标是欺骗判别器网络,使其将生成的样本误判为来自训练集。
(4)重复步骤(1)-(3)若干次,直到生成器网络收敛。
import tensorflow as tf
from tensorflow.keras import layers
# 定义生成器网络
def make_generator_model():
model = tf.keras.Sequential()
model.add(layers.Dense(256, input_shape=(100,), use_bias=False))
model.add(layers.BatchNormalization())
model.add(layers.LeakyReLU())
model.add(layers.Dense(512, use_bias=False))
model.add(layers.BatchNormalization())
model.add(layers.LeakyReLU())
model.add(layers.Dense(28 * 28, activation='tanh'))
model.add(layers.Reshape((28, 28, 1)))
return model
# 定义判别器网络
def make_discriminator_model():
model = tf.keras.Sequential()
model.add(layers.Flatten(input_shape=(28, 28, 1)))
model.add(layers.Dense(512))
model.add(layers.LeakyReLU())
model.add(layers.Dense(256))
model.add(layers.LeakyReLU())
model.add(layers.Dense(1, activation='sigmoid'))
return model
# 定义生成器和判别器
generator = make_generator_model()
discriminator = make_discriminator_model()
# 定义生成器和判别器的优化器
generator_optimizer = tf.keras.optimizers.Adam(1e-4)
discriminator_optimizer = tf.keras.optimizers.Adam(1e-4)
# 定义损失函数
cross_entropy = tf.keras.losses.BinaryCrossentropy(from_logits=True)
# 定义生成器的训练步骤
@tf.function
def train_generator_step(images):
noise = tf.random.normal([BATCH_SIZE, 100])
with tf.GradientTape() as gen_tape:
generated_images = generator(noise, training=True)
fake_output = discriminator(generated_images, training=False)
gen_loss = generator_loss(fake_output)
gradients_of_generator = gen_tape.gradient(gen_loss, generator.trainable_variables)
generator_optimizer.apply_gradients(zip(gradients_of_generator, generator.trainable_variables))
# 定义判别器的训练步骤
@tf.function
def train_discriminator_step(images):
noise = tf.random.normal([BATCH_SIZE, 100])
with tf.GradientTape() as disc_tape:
generated_images = generator(noise, training=True)
real_output = discriminator(images, training=True)
fake_output = discriminator(generated_images, training=True)
disc_loss = discriminator_loss(real_output, fake_output)
gradients_of_discriminator = disc_tape.gradient(disc_loss, discriminator.trainable_variables)
discriminator_optimizer.apply_gradients(zip(gradients_of_discriminator, discriminator.trainable_variables))
# 开始对抗训练
def train(dataset, epochs):
for epoch in range(epochs):
for image_batch in dataset:
train_discriminator_step(image_batch)
train_generator_step(image_batch)
# 加载MNIST数据集
(train_images, _), (_, _) = tf.keras.datasets.mnist.load_data()
train_images = train_images.reshape(train_images.shape[0], 28, 28, 1).astype('float32')
train_images = (train_images - 127.5) / 127.5
train_dataset = tf.data.Dataset.from_tensor_slices(train_images).shuffle(BUFFER_SIZE).batch(BATCH_SIZE)
# 指定批次大小和缓冲区大小
BATCH_SIZE = 256
BUFFER_SIZE = 60000
# 指定训练周期
EPOCHS = 50
# 开始训练
train(train_dataset, EPOCHS)以上代码示例中,我们定义了生成器和判别器的网络结构,选择了Adam优化器和二元交叉熵损失函数。然后,我们定义了生成器和判别器的训练步骤,并通过训练函数对网络进行训练。最后,我们加载了MNIST数据集,并执行对抗训练过程。
以上就是对抗训练中的分布偏移问题的详细内容,更多请关注php中文网其它相关文章!
每个人都需要一台速度更快、更稳定的 PC。随着时间的推移,垃圾文件、旧注册表数据和不必要的后台进程会占用资源并降低性能。幸运的是,许多工具可以让 Windows 保持平稳运行。
Copyright 2014-2025 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号