0

0

简单入门matplotlib:快速教程

WBOY

WBOY

发布时间:2024-01-09 10:38:11

|

1612人浏览过

|

来源于php中文网

原创

快速上手matplotlib:简明教程

快速上手matplotlib:简明教程

Matplotlib是一个著名的Python数据可视化库,提供了丰富的绘图工具,广泛应用于数据分析、科学计算、工程绘图等领域。本文将为大家介绍如何快速上手matplotlib,并提供一些具体的代码示例。

一、安装Matplotlib
在开始之前,我们首先需要安装Matplotlib库。可以通过pip命令来进行安装:

pip install matplotlib

二、基本绘图功能
2.1折线图
折线图是最常用的一种数据可视化方式,可以展示数据的趋势变化。

下面是一个简单的例子,展示了某地每年的降雨量情况:

import matplotlib.pyplot as plt

years = [2015, 2016, 2017, 2018, 2019, 2020]
rainfall = [800, 900, 850, 1000, 950, 1100]

plt.plot(years, rainfall, marker='o', linestyle='--', color='blue')
plt.xlabel('Year')
plt.ylabel('Rainfall (mm)')
plt.title('Annual Rainfall')
plt.show()

在这个例子中,我们首先定义了两个列表years和rainfall,分别表示年份和每年的降雨量。然后通过plt.plot()函数绘制了折线图,指定了折线的样式和颜色。最后,通过plt.xlabel()、plt.ylabel()和plt.title()函数设置了横轴、纵轴的标签和图表的标题,并通过plt.show()函数显示出图表。

2.2散点图
散点图可以用来表示两个变量之间的关系,并观察它们之间的分布规律。

下面是一个简单的例子,展示了学生的体重和身高之间的关系:

import matplotlib.pyplot as plt

weight = [50, 55, 60, 65, 70, 75]
height = [150, 160, 165, 170, 175, 180]

plt.scatter(weight, height, marker='o', color='red')
plt.xlabel('Weight (kg)')
plt.ylabel('Height (cm)')
plt.title('Student Weight vs Height')
plt.show()

在这个例子中,我们定义了两个列表weight和height,分别表示学生的体重和身高。然后通过plt.scatter()函数绘制了散点图,指定了散点的样式和颜色。最后,通过plt.xlabel()、plt.ylabel()和plt.title()函数设置了横轴、纵轴的标签和图表的标题,并通过plt.show()函数显示出图表。

2.3柱状图
柱状图可以用来比较不同类别之间的数据大小。

下面是一个简单的例子,展示了某地每月的降雨量情况:

import matplotlib.pyplot as plt

months = ['Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun']
rainfall = [50, 45, 60, 70, 65, 80]

plt.bar(months, rainfall, color='green')
plt.xlabel('Month')
plt.ylabel('Rainfall (mm)')
plt.title('Monthly Rainfall')
plt.show()

在这个例子中,我们定义了两个列表months和rainfall,分别表示月份和每月的降雨量。然后通过plt.bar()函数绘制了柱状图,指定了柱子的颜色。最后,通过plt.xlabel()、plt.ylabel()和plt.title()函数设置了横轴、纵轴的标签和图表的标题,并通过plt.show()函数显示出图表。

DM建站系统汽车保养维修HTML5网站模板1.5
DM建站系统汽车保养维修HTML5网站模板1.5

DM建站系统汽车保养维修HTML5网站模板,DM企业建站系统。是由php+mysql开发的一套专门用于中小企业网站建设的开源cms。DM系统的理念就是组装,把模板和区块组装起来,产生不同的网站效果。可以用来快速建设一个响应式的企业网站( PC,手机,微信都可以访问)。后台操作简单,维护方便。DM企业建站系统安装步骤:第一步,先用phpmyadmin导入sql文件。 第二步:把文件放到你的本地服务器

下载

三、进阶功能
除了基本的绘图功能之外,Matplotlib还提供了许多进阶的功能,比如子图、图例、标注等。

3.1子图
可以使用plt.subplot()函数创建子图,并在每个子图中绘制不同的图表。

下面是一个简单的例子,展示了两个子图,分别为折线图和散点图:

import matplotlib.pyplot as plt

years = [2015, 2016, 2017, 2018, 2019, 2020]
rainfall = [800, 900, 850, 1000, 950, 1100]
weight = [50, 55, 60, 65, 70, 75]
height = [150, 160, 165, 170, 175, 180]

plt.subplot(1, 2, 1)
plt.plot(years, rainfall, marker='o', linestyle='--', color='blue')
plt.xlabel('Year')
plt.ylabel('Rainfall (mm)')
plt.title('Annual Rainfall')

plt.subplot(1, 2, 2)
plt.scatter(weight, height, marker='o', color='red')
plt.xlabel('Weight (kg)')
plt.ylabel('Height (cm)')
plt.title('Student Weight vs Height')

plt.tight_layout()
plt.show()

在这个例子中,我们使用plt.subplot(1, 2, 1)和plt.subplot(1, 2, 2)分别创建了两个子图,其中(1, 2, 1)表示1行2列的子图中的第一个子图,(1, 2, 2)表示1行2列的子图中的第二个子图。然后分别在每个子图中绘制了不同的图表。最后,通过plt.tight_layout()函数调整子图的布局,并通过plt.show()函数显示出图表。

3.2图例
可以使用plt.legend()函数添加图例,以说明不同数据对应的含义。

下面是一个简单的例子,展示了某地每年和每月的降雨量情况,并添加了相应的图例:

import matplotlib.pyplot as plt

years = [2015, 2016, 2017, 2018, 2019, 2020]
rainfall_year = [800, 900, 850, 1000, 950, 1100]
months = ['Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun']
rainfall_month = [50, 45, 60, 70, 65, 80]

plt.plot(years, rainfall_year, marker='o', linestyle='--', color='blue', label='Yearly')
plt.bar(months, rainfall_month, color='green', label='Monthly')
plt.xlabel('Time')
plt.ylabel('Rainfall (mm)')
plt.title('Rainfall')
plt.legend()
plt.show()

在这个例子中,我们通过在plt.plot()和plt.bar()函数中添加label参数,分别指定了每年和每月降雨量对应的标签,然后使用plt.legend()函数添加了图例。最后,通过plt.xlabel()、plt.ylabel()和plt.title()函数设置了横轴、纵轴的标签和图表的标题,并通过plt.show()函数显示出图表。

3.3标注
可以使用plt.annotate()函数在图表中添加文本标注。

下面是一个简单的例子,展示了某地每年降雨量的最大值,并在图表中添加了相应的文本标注:

import matplotlib.pyplot as plt

years = [2015, 2016, 2017, 2018, 2019, 2020]
rainfall = [800, 900, 850, 1000, 950, 1100]

plt.plot(years, rainfall, marker='o', linestyle='--', color='blue')
plt.xlabel('Year')
plt.ylabel('Rainfall (mm)')
plt.title('Annual Rainfall')

max_rainfall = max(rainfall)
max_index = rainfall.index(max_rainfall)
plt.annotate(f'Max: {max_rainfall}', xy=(years[max_index], max_rainfall),
             xytext=(years[max_index]+1, max_rainfall-50),
             arrowprops=dict(facecolor='black', arrowstyle='->'))

plt.show()

在这个例子中,我们首先通过max()函数找到降雨量的最大值和对应的索引,然后使用plt.annotate()函数在图表中添加文本标注,指定了标注的位置和箭头的样式。最后,通过plt.xlabel()、plt.ylabel()和plt.title()函数设置了横轴、纵轴的标签和图表的标题,并通过plt.show()函数显示出图表。

四、总结
通过本文的介绍,我们可以看到Matplotlib是一个功能强大的数据可视化库,提供了丰富的绘图工具。无论是折线图、散点图还是柱状图,Matplotlib都可以轻松实现。此外,Matplotlib还提供了一些进阶的功能,如子图、图例、标注等,可以更加灵活地定制图表。希望本教程能够帮助大家快速上手Matplotlib,并且通过具体的代码示例,能够更好地理解Matplotlib的使用方法。

相关专题

更多
python开发工具
python开发工具

php中文网为大家提供各种python开发工具,好的开发工具,可帮助开发者攻克编程学习中的基础障碍,理解每一行源代码在程序执行时在计算机中的过程。php中文网还为大家带来python相关课程以及相关文章等内容,供大家免费下载使用。

752

2023.06.15

python打包成可执行文件
python打包成可执行文件

本专题为大家带来python打包成可执行文件相关的文章,大家可以免费的下载体验。

636

2023.07.20

python能做什么
python能做什么

python能做的有:可用于开发基于控制台的应用程序、多媒体部分开发、用于开发基于Web的应用程序、使用python处理数据、系统编程等等。本专题为大家提供python相关的各种文章、以及下载和课程。

758

2023.07.25

format在python中的用法
format在python中的用法

Python中的format是一种字符串格式化方法,用于将变量或值插入到字符串中的占位符位置。通过format方法,我们可以动态地构建字符串,使其包含不同值。php中文网给大家带来了相关的教程以及文章,欢迎大家前来阅读学习。

618

2023.07.31

python教程
python教程

Python已成为一门网红语言,即使是在非编程开发者当中,也掀起了一股学习的热潮。本专题为大家带来python教程的相关文章,大家可以免费体验学习。

1262

2023.08.03

python环境变量的配置
python环境变量的配置

Python是一种流行的编程语言,被广泛用于软件开发、数据分析和科学计算等领域。在安装Python之后,我们需要配置环境变量,以便在任何位置都能够访问Python的可执行文件。php中文网给大家带来了相关的教程以及文章,欢迎大家前来学习阅读。

547

2023.08.04

python eval
python eval

eval函数是Python中一个非常强大的函数,它可以将字符串作为Python代码进行执行,实现动态编程的效果。然而,由于其潜在的安全风险和性能问题,需要谨慎使用。php中文网给大家带来了相关的教程以及文章,欢迎大家前来学习阅读。

577

2023.08.04

scratch和python区别
scratch和python区别

scratch和python的区别:1、scratch是一种专为初学者设计的图形化编程语言,python是一种文本编程语言;2、scratch使用的是基于积木的编程语法,python采用更加传统的文本编程语法等等。本专题为大家提供scratch和python相关的文章、下载、课程内容,供大家免费下载体验。

706

2023.08.11

Java 桌面应用开发(JavaFX 实战)
Java 桌面应用开发(JavaFX 实战)

本专题系统讲解 Java 在桌面应用开发领域的实战应用,重点围绕 JavaFX 框架,涵盖界面布局、控件使用、事件处理、FXML、样式美化(CSS)、多线程与UI响应优化,以及桌面应用的打包与发布。通过完整示例项目,帮助学习者掌握 使用 Java 构建现代化、跨平台桌面应用程序的核心能力。

36

2026.01.14

热门下载

更多
网站特效
/
网站源码
/
网站素材
/
前端模板

精品课程

更多
相关推荐
/
热门推荐
/
最新课程
最新Python教程 从入门到精通
最新Python教程 从入门到精通

共4课时 | 0.7万人学习

Node.js 教程
Node.js 教程

共57课时 | 8.6万人学习

CSS3 教程
CSS3 教程

共18课时 | 4.5万人学习

关于我们 免责申明 举报中心 意见反馈 讲师合作 广告合作 最新更新
php中文网:公益在线php培训,帮助PHP学习者快速成长!
关注服务号 技术交流群
PHP中文网订阅号
每天精选资源文章推送

Copyright 2014-2026 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号