0

0

深入理解Pytorch核心,Tensor的突破之路!

王林

王林

发布时间:2024-01-09 20:50:24

|

1125人浏览过

|

来源于51CTO.COM

转载

今天会把pytorch在张量这方面的内容做一个记录。

同时希望可以给大家提供一丢丢帮助!

因为今儿分享的内容,绝对是非常干货的一些示例。

先简单介绍下,在PyTorch中,张量是核心数据结构,它是一个多维数组,类似于NumPy中的数组。张量不仅仅是存储数据的容器,还是进行各种数学运算和深度学习操作的基础。

下面从三方面做一个总结:

  • 张量的概念
  • 张量的原理
  • 张量的操作

☞☞☞AI 智能聊天, 问答助手, AI 智能搜索, 免费无限量使用 DeepSeek R1 模型☜☜☜

突破Pytorch核心,Tensor !!图片

张量的概念

1.张量的定义

张量是一种多维数组,它可以是标量(零维数组)、向量(一维数组)、矩阵(二维数组)或具有更高维度的数组。

在PyTorch中,张量是torch.Tensor的实例,可以通过不同的方式创建,如直接从Python列表、NumPy数组或通过特定函数生成。

import torch# 创建一个标量scalar_tensor = torch.tensor(3.14)# 创建一个向量vector_tensor = torch.tensor([1, 2, 3])# 创建一个矩阵matrix_tensor = torch.tensor([[1, 2, 3], [4, 5, 6]])# 创建一个3D张量tensor_3d = torch.rand((2, 3, 4))# 2行3列4深度

2.张量的属性

每个张量都有一些重要的属性,包括形状(shape)、数据类型(dtype)和设备(device)。

# 获取张量的形状shape = tensor_3d.shape# 获取张量的数据类型dtype = tensor_3d.dtype# 获取张量所在的设备device = tensor_3d.device

3.张量的形状

张量的形状定义了其维度和每个维度上的大小。例如,形状为(2, 3, 4)的张量具有2行、3列和4个深度。形状对于理解和操作张量非常重要。

# 获取张量的形状shape = tensor_3d.shape# 改变张量的形状reshaped_tensor = tensor_3d.view(3, 8)# 将原始形状(2, 3, 4)变为(3, 8)

张量的原理

PyTorch中的张量是基于Tensor类实现的,它提供了对底层存储的抽象。

张量包含三个主要组件:

AI Undetect
AI Undetect

让AI无法察觉,让文字更人性化,为文字体验创造无限可能。

下载
  • 存储(storage)
  • 形状(shape)
  • 步幅(stride)

1.存储

(Storage)存储是实际存储数据的地方,它是一块连续的内存区域。多个张量可以共享相同的存储,从而减少内存消耗。存储中的数据按照张量的形状进行排列。

# 获取张量的存储storage = tensor_3d.storage()

2.形状(Shape)

张量的形状定义了其维度和每个维度上的大小。形状信息有助于解释存储中数据的组织方式。

# 获取张量的形状shape = tensor_3d.shape

3.步幅(Stride)

步幅是指在存储中移动到下一个元素所需的步数。了解步幅有助于理解在张量中进行索引和切片时的性能。

# 获取张量的步幅stride = tensor_3d.stride()

张量的操作

PyTorch提供了丰富的张量操作,包括数学运算、逻辑运算、索引和切片等。

这里列举最最常见的集中操作:

1.数学运算

# 加法result_add = tensor_3d + 2# 乘法result_mul = tensor_3d * 3# 矩阵乘法matrix_a = torch.rand((2, 3))matrix_b = torch.rand((3, 4))result_matmul = torch.mm(matrix_a, matrix_b)

2. 逻辑运算

# 大小比较result_compare = tensor_3d > 0.5# 逻辑运算result_logical = torch.logical_and(result_add, result_compare)

3. 索引和切片

# 索引element = tensor_3d[0, 1, 2]# 切片sliced_tensor = tensor_3d[:, 1:3, :]

4. 形状操作

# 改变形状reshaped_tensor = tensor_3d.view(3, 8)# 转置transposed_tensor = tensor_3d.transpose(0, 2)

5.广播

广播是一种自动扩展张量的操作,使得形状不同的张量可以进行逐元素的数学运算。

# 广播tensor_a = torch.rand((1, 3, 1))tensor_b = torch.rand((2, 1, 4))result_broadcast = tensor_a + tensor_b

最后

今儿介绍的是关于PyTorch中张量的基础概念、原理以及常见操作。

张量作为深度学习中的基本数据结构,对于理解和实现神经网络非常关键。

相关专题

更多
python开发工具
python开发工具

php中文网为大家提供各种python开发工具,好的开发工具,可帮助开发者攻克编程学习中的基础障碍,理解每一行源代码在程序执行时在计算机中的过程。php中文网还为大家带来python相关课程以及相关文章等内容,供大家免费下载使用。

746

2023.06.15

python打包成可执行文件
python打包成可执行文件

本专题为大家带来python打包成可执行文件相关的文章,大家可以免费的下载体验。

634

2023.07.20

python能做什么
python能做什么

python能做的有:可用于开发基于控制台的应用程序、多媒体部分开发、用于开发基于Web的应用程序、使用python处理数据、系统编程等等。本专题为大家提供python相关的各种文章、以及下载和课程。

758

2023.07.25

format在python中的用法
format在python中的用法

Python中的format是一种字符串格式化方法,用于将变量或值插入到字符串中的占位符位置。通过format方法,我们可以动态地构建字符串,使其包含不同值。php中文网给大家带来了相关的教程以及文章,欢迎大家前来阅读学习。

617

2023.07.31

python教程
python教程

Python已成为一门网红语言,即使是在非编程开发者当中,也掀起了一股学习的热潮。本专题为大家带来python教程的相关文章,大家可以免费体验学习。

1261

2023.08.03

python环境变量的配置
python环境变量的配置

Python是一种流行的编程语言,被广泛用于软件开发、数据分析和科学计算等领域。在安装Python之后,我们需要配置环境变量,以便在任何位置都能够访问Python的可执行文件。php中文网给大家带来了相关的教程以及文章,欢迎大家前来学习阅读。

547

2023.08.04

python eval
python eval

eval函数是Python中一个非常强大的函数,它可以将字符串作为Python代码进行执行,实现动态编程的效果。然而,由于其潜在的安全风险和性能问题,需要谨慎使用。php中文网给大家带来了相关的教程以及文章,欢迎大家前来学习阅读。

577

2023.08.04

scratch和python区别
scratch和python区别

scratch和python的区别:1、scratch是一种专为初学者设计的图形化编程语言,python是一种文本编程语言;2、scratch使用的是基于积木的编程语法,python采用更加传统的文本编程语法等等。本专题为大家提供scratch和python相关的文章、下载、课程内容,供大家免费下载体验。

705

2023.08.11

Java 项目构建与依赖管理(Maven / Gradle)
Java 项目构建与依赖管理(Maven / Gradle)

本专题系统讲解 Java 项目构建与依赖管理的完整体系,重点覆盖 Maven 与 Gradle 的核心概念、项目生命周期、依赖冲突解决、多模块项目管理、构建加速与版本发布规范。通过真实项目结构示例,帮助学习者掌握 从零搭建、维护到发布 Java 工程的标准化流程,提升在实际团队开发中的工程能力与协作效率。

4

2026.01.12

热门下载

更多
网站特效
/
网站源码
/
网站素材
/
前端模板

精品课程

更多
相关推荐
/
热门推荐
/
最新课程
关于我们 免责申明 举报中心 意见反馈 讲师合作 广告合作 最新更新
php中文网:公益在线php培训,帮助PHP学习者快速成长!
关注服务号 技术交流群
PHP中文网订阅号
每天精选资源文章推送

Copyright 2014-2026 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号