0

0

深入理解 Pytorch 核心功能:自动求导!

PHPz

PHPz

发布时间:2024-01-10 19:06:28

|

711人浏览过

|

来源于51CTO.COM

转载

嗨,我是小壮! 

关于pytorch中的自动求导操作,介绍有关pytorch自动求导的概念.

自动求导是深度学习框架的重要功能,用于计算梯度,实现参数更新和优化。

PyTorch是一种常用的深度学习框架,采用动态计算图和自动求导机制,简化了梯度计算的过程。

☞☞☞AI 智能聊天, 问答助手, AI 智能搜索, 免费无限量使用 DeepSeek R1 模型☜☜☜

突破 Pytorch 核心点,自动求导 !!

自动求导

自动求导是机器学习框架的一项重要功能,它能够自动计算函数的导数(梯度),从而简化了训练深度学习模型的过程。在深度学习中,模型通常包含大量参数,手动计算梯度会变得复杂且容易出错。PyTorch提供了自动求导的功能,使得用户可以轻松计算梯度并进行反向传播以更新模型参数。这一功能的引入大大提高了深度学习的效率和易用性。

一点原理

PyTorch的自动求导功能是基于动态计算图的。计算图是一种图结构,用于表示函数计算过程,其中节点代表操作,边代表数据流向。与静态计算图不同,动态计算图的结构可以根据实际执行过程动态生成,而非事先定义好。这种设计使得PyTorch具有灵活性和可扩展性,能够适应不同的计算需求。通过动态计算图,PyTorch能够记录操作的历史,并根据需要进行反向传播,计算梯度。这使得PyTorch成为深度学习领域中广泛应用的框架之一。

在PyTorch中,用户的每个操作都被记录下来以构建计算图。这样,当需要计算梯度时,PyTorch可以根据计算图进行反向传播并自动计算每个参数对损失函数的梯度。这基于动态计算图的自动求导机制使得PyTorch具备了灵活性和可扩展性,使其适用于各种复杂的神经网络结构。

自动求导的基础操作

1. 张量(Tensor)

在PyTorch中,张量是自动求导的基础数据结构。张量类似于NumPy中的多维数组,但具有额外的特性,如自动求导。通过torch.Tensor类,用户可以创建张量并对其进行各种操作。

import torch# 创建张量x = torch.tensor([2.0], requires_grad=True)

在上述例子中,requires_grad=True表示我们希望对这个张量进行自动求导。

2. 计算图构建

每个执行的操作都会在计算图中创建一个节点。PyTorch提供了各种张量操作,如加法、乘法、激活函数等,这些操作都会在计算图中留下痕迹。

# 张量操作y = x ** 2z = 2 * y + 3

在上述例子中,y和z的计算过程都被记录在计算图中。

3. 梯度计算与反向传播

一旦计算图构建完成,可以通过调用.backward()方法进行反向传播,自动计算梯度。

Magic CMS 网站管理系统2.2.1.alpha 政企版
Magic CMS 网站管理系统2.2.1.alpha 政企版

Magic CMS网站管理系统(政企版)采用PHP+Mysql架构,再原CMS系统的基础上精简出适合企业政府客户使用版本,继承了原系统的快捷,高效,灵活,实用的特点,保留了核心功能,系统支持自定义模版(极易整合dede模板)、支持扩展插件,自定义模型等功能,保留了文章模型,视频模型,图集模型,产品模型,能够胜任企业多种建站需求。BUG修复:1.修改了程序安装时部分数据无法正常导入的错误2.修改了程

下载
# 反向传播z.backward()

此时,x的梯度可以通过访问x.grad来获取。

# 获取梯度print(x.grad)

4. 禁用梯度跟踪

有时候,我们希望禁用对某些操作的梯度跟踪,可以使用torch.no_grad()上下文管理器。

with torch.no_grad():# 在这个区域内的操作不会被记录在计算图中w = x + 1

5. 清零梯度

在训练循环中,通常需要在每次反向传播之前将梯度清零,以避免梯度累积。

# 清零梯度x.grad.zero_()

一个完整案例:线性回归的自动求导

为了更具体地演示自动求导的过程,让我们考虑一个简单的线性回归问题。我们定义一个线性模型和一个均方误差损失函数,并使用自动求导来优化模型参数。

import torch# 数据准备X = torch.tensor([[1.0], [2.0], [3.0]])y = torch.tensor([[2.0], [4.0], [6.0]])# 模型参数w = torch.tensor([[0.0]], requires_grad=True)b = torch.tensor([[0.0]], requires_grad=True)# 模型和损失函数def linear_model(X, w, b):return X @ w + bdef mean_squared_error(y_pred, y_true):return ((y_pred - y_true) ** 2).mean()# 训练循环learning_rate = 0.01epochs = 100for epoch in range(epochs):# 前向传播y_pred = linear_model(X, w, b)loss = mean_squared_error(y_pred, y)# 反向传播loss.backward()# 更新参数with torch.no_grad():w -= learning_rate * w.gradb -= learning_rate * b.grad# 清零梯度w.grad.zero_()b.grad.zero_()# 打印最终参数print("训练后的参数:")print("权重 w:", w)print("偏置 b:", b)

在这个例子中,我们定义了一个简单的线性模型和均方误差损失函数。通过多次迭代训

练循环,模型的参数w和b会被优化,使得损失函数最小化。

最后

PyTorch中的自动求导为深度学习提供了强大的支持,使得模型的训练变得更加简单和高效。

通过动态计算图和梯度计算,用户可以方便地定义复杂的神经网络结构,并通过自动求导实现梯度下降等优化算法。

这使得深度学习研究者和工程师能够更专注于模型的设计和实验,而不必担心梯度计算的细节。

相关专题

更多
treenode的用法
treenode的用法

​在计算机编程领域,TreeNode是一种常见的数据结构,通常用于构建树形结构。在不同的编程语言中,TreeNode可能有不同的实现方式和用法,通常用于表示树的节点信息。更多关于treenode相关问题详情请看本专题下面的文章。php中文网欢迎大家前来学习。

530

2023.12.01

C++ 高效算法与数据结构
C++ 高效算法与数据结构

本专题讲解 C++ 中常用算法与数据结构的实现与优化,涵盖排序算法(快速排序、归并排序)、查找算法、图算法、动态规划、贪心算法等,并结合实际案例分析如何选择最优算法来提高程序效率。通过深入理解数据结构(链表、树、堆、哈希表等),帮助开发者提升 在复杂应用中的算法设计与性能优化能力。

14

2025.12.22

页面置换算法
页面置换算法

页面置换算法是操作系统中用来决定在内存中哪些页面应该被换出以便为新的页面提供空间的算法。本专题为大家提供页面置换算法的相关文章,大家可以免费体验。

390

2023.08.14

pytorch是干嘛的
pytorch是干嘛的

pytorch是一个基于python的深度学习框架,提供以下主要功能:动态图计算,提供灵活性。强大的张量操作,实现高效处理。自动微分,简化梯度计算。预构建的神经网络模块,简化模型构建。各种优化器,用于性能优化。想了解更多pytorch的相关内容,可以阅读本专题下面的文章。

428

2024.05.29

Python AI机器学习PyTorch教程_Python怎么用PyTorch和TensorFlow做机器学习
Python AI机器学习PyTorch教程_Python怎么用PyTorch和TensorFlow做机器学习

PyTorch 是一种用于构建深度学习模型的功能完备框架,是一种通常用于图像识别和语言处理等应用程序的机器学习。 使用Python 编写,因此对于大多数机器学习开发者而言,学习和使用起来相对简单。 PyTorch 的独特之处在于,它完全支持GPU,并且使用反向模式自动微分技术,因此可以动态修改计算图形。

13

2025.12.22

php源码安装教程大全
php源码安装教程大全

本专题整合了php源码安装教程,阅读专题下面的文章了解更多详细内容。

192

2025.12.31

php网站源码教程大全
php网站源码教程大全

本专题整合了php网站源码相关教程,阅读专题下面的文章了解更多详细内容。

101

2025.12.31

视频文件格式
视频文件格式

本专题整合了视频文件格式相关内容,阅读专题下面的文章了解更多详细内容。

116

2025.12.31

不受国内限制的浏览器大全
不受国内限制的浏览器大全

想找真正自由、无限制的上网体验?本合集精选2025年最开放、隐私强、访问无阻的浏览器App,涵盖Tor、Brave、Via、X浏览器、Mullvad等高自由度工具。支持自定义搜索引擎、广告拦截、隐身模式及全球网站无障碍访问,部分更具备防追踪、去谷歌化、双内核切换等高级功能。无论日常浏览、隐私保护还是突破地域限制,总有一款适合你!

89

2025.12.31

热门下载

更多
网站特效
/
网站源码
/
网站素材
/
前端模板

精品课程

更多
相关推荐
/
热门推荐
/
最新课程
关于我们 免责申明 举报中心 意见反馈 讲师合作 广告合作 最新更新
php中文网:公益在线php培训,帮助PHP学习者快速成长!
关注服务号 技术交流群
PHP中文网订阅号
每天精选资源文章推送

Copyright 2014-2026 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号