首页 > web3.0 > 正文

粒子群优化算法(PSO)的Python实现简介

DDD
发布: 2024-01-19 16:48:17
转载
1007人浏览过

粒子群优化算法(pso)是一种强大的元启发式算法,受群体行为启发,如鱼和鸟群。

粒子群算法概念

假设有一群鸟,它们都感到饥饿,正在寻找食物。这些鸟可以与计算系统中渴望资源的任务相关联。在它们所在的地方,只有一种食物颗粒,这种食物颗粒可以代表资源。

众所周知,任务很多,资源有限。因此,这已成为与特定计算环境中类似的条件。

现在,鸟类不知道食物颗粒隐藏在何处。在这种情况下,应该如何设计寻找食物颗粒的算法。

鸟类寻找食物的方式可以用来设计一种称为粒子群优化算法(PSO)的算法。如果每只鸟都试图独自寻找食物,可能会造成严重破坏并浪费大量时间。尽管鸟类不知道食物颗粒确切的位置,但它们知道与食物颗粒的距离。因此,最佳的寻找食物颗粒的方法是跟随离食物颗粒最近的鸟类。PSO算法模拟了鸟类的这种行为,并在计算环境中应用。这种算法的应用可以有效地解决一些优化问题。

立即学习Python免费学习笔记(深入)”;

Python实现粒子群算法

设定问题参数:维数(d)、下限(minx)、上限(maxx)

算法超参数:粒子数(N)、最大迭代次数(max_iter)、惰性(w)、粒子的认知(C1)、群体的社会影响(C2)

Step1:随机初始化N个粒子Xi(i=1,2,...,n)的Swarm种群

Step2:选择超参数值w,c1和c2

Step3:

For Iter in range(max_iter):
For i in range(N):
a.Compute new velocity of ith particle
swarm<i>.velocity=
w*swarm<i>.velocity+
r1*c1*(swarm<i>.bestPos-swarm<i>.position)+
r2*c2*(best_pos_swarm-swarm<i>.position)
b.If velocity is not in range[minx,max]then clip it
if swarm<i>.velocity<minx:
swarm<i>.velocity=minx
elif swarm<i>.velocity[k]>maxx:
swarm<i>.velocity[k]=maxx
c.Compute new position of ith particle using its new velocity
swarm<i>.position+=swarm<i>.velocity
d.Update new best of this particle and new best of Swarm

if swarm<i>.fitness<swarm<i>.bestFitness:
swarm<i>.bestFitness=swarm<i>.fitness
swarm<i>.bestPos=swarm<i>.position

if swarm<i>.fitness<best_fitness_swarm
best_fitness_swarm=swarm<i>.fitness
best_pos_swarm=swarm<i>.position
End-for
End-for
Step 4:Return best particle of Swarm
登录后复制

以上就是粒子群优化算法(PSO)的Python实现简介的详细内容,更多请关注php中文网其它相关文章!

相关标签:
python速学教程(入门到精通)
python速学教程(入门到精通)

python怎么学习?python怎么入门?python在哪学?python怎么学才快?不用担心,这里为大家提供了python速学教程(入门到精通),有需要的小伙伴保存下载就能学习啦!

下载
来源:网易伏羲网
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn
最新问题
开源免费商场系统广告
热门教程
更多>
最新下载
更多>
网站特效
网站源码
网站素材
前端模板
关于我们 免责申明 举报中心 意见反馈 讲师合作 广告合作 最新更新 English
php中文网:公益在线php培训,帮助PHP学习者快速成长!
关注服务号 技术交流群
PHP中文网订阅号
每天精选资源文章推送
PHP中文网APP
随时随地碎片化学习

Copyright 2014-2025 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号