0

0

探究嵌套采样算法的基本原理和实施流程

PHPz

PHPz

发布时间:2024-01-22 21:51:17

|

1288人浏览过

|

来源于网易伏羲

转载

☞☞☞AI 智能聊天, 问答助手, AI 智能搜索, 免费无限量使用 DeepSeek R1 模型☜☜☜

嵌套采样算法的基本思想和实现过程

嵌套采样算法是一种高效的贝叶斯统计推断算法,用于计算复杂概率分布下的积分或求和。它通过将参数空间分解为多个体积相等的超立方体,并逐步迭代地将其中一个最小体积的超立方体“推出”,然后用随机样本填充该超立方体,以更好地估计概率分布的积分值。通过不断迭代,嵌套采样算法可以得到高精度的积分值和参数空间的边界,从而可应用于模型比较、参数估计和模型选择等统计学问题。该算法的核心思想是将复杂的积分问题转化为一系列简单的积分问题,通过逐步缩小参数空间的体积,逼近真实的积分值。每个迭代步骤都通过随机采样从参数空间中获取样本,并根据样本的概率密度函数进行加权计算,以得到积分值的估计。嵌套采样算法的优点是可以处理各种复杂的概率分布,并且在计算效率和精度上都有很好的表现。

AI图像编辑器
AI图像编辑器

使用文本提示编辑、变换和增强照片

下载

嵌套采样算法最初由Skilling于2004年提出,它在天文学、统计学、物理学、生物学等领域的数据分析和模型比较中得到广泛应用。下面我们将通过一个简单的例子来介绍嵌套采样算法的基本思想和实现过程。

假设我们有一个正态分布的概率密度函数p(x),我们希望计算其在整个实数区间上的积分值,即求解∫p(x)dx。根据正态分布的性质,我们知道p(x)的积分值是1。为了验证这个性质,我们可以使用嵌套采样算法进行计算。该算法的基本思想是通过在正态分布上进行随机采样,并对采样点进行加权求和来逼近积分值。通过反复进行采样和加权求和的过程,我们可以得到一个足够接近1的积分值,从而验证正态分布的性质。

首先,我们将参数空间[-∞, ∞]分解为多个体积相等的超立方体V_i,每个超立方体的体积为ΔV = 1/N,其中N是超立方体的数目。我们用x_i表示第i个超立方体中的一个随机样本,然后计算p(x_i)的值。为了确保每个超立方体都可以被填满,我们需要从一个超立方体中随机采样一些样本,并将这些样本填充到其他的超立方体中。这样,每个超立方体都会被填充满,并且我们可以得到一个更准确的概率密度函数的估计值。

然后,我们要选择一个超立方体V_{\text{min}},它的概率密度函数值最小。为了实现这个过程,我们需要移除V_{\text{min}}中概率密度函数值最小的样本,即将所有x_i中具有最小概率密度函数值的样本从V_{\text{min}}中移除。在这个过程中,我们需要记录下V_{\text{min}}的体积和最小概率密度函数值,并将其作为下一次迭代的参考值。

重复以上过程,直到所有的超立方体都被“推出”,此时我们就得到了完整的概率密度函数估计和积分值的近似值。具体实现过程如下:

import numpy as np

def log_likelihood(x):
"""定义概率密度函数"""
return -0.5 * x ** 2

def nested_sampling(N, log_likelihood):
"""嵌套采样算法实现"""
log_X = -np.inf
logL = [log_likelihood(np.random.randn()) for i in range(N)]
for i in range(N):
# 找到最小的概率密度函数值的样本
idx = np.argmin(logL)
logL[idx] = np.inf
# 计算当前的体积和概率密度函数值
log_X_new = logL[idx] - np.log(N - i)
logL_new = log_likelihood(np.random.randn())
# 更新 X 和 logL
log_X = np.logaddexp(log_X,log_X_new)
logL[idx] = logL_new
# 返回结果
return log_X, log_X - np.log(N)

其中,N表示超立方体的数目,log_likelihood是概率密度函数的对数值,log_X是对数积分值的近似值,logL是每个超立方体中最小概率密度函数值的对数值,np.logaddexp是对数加法函数,用于避免数值下溢或上溢。

在上面的代码中,我们首先定义了一个正态分布的概率密度函数log_likelihood,然后通过nested_sampling 函数实现了嵌套采样算法。在这个函数中,我们首先初始化log_X的值为负无穷大,然后通过循环迭代N次,找到最小的概率密度函数值的样本,计算当前的体积和概率密度函数值,更新log_X和logL的值,并返回最终的结果。

需要注意的是,我们在上面的代码中没有直接计算积分值,而是计算了其对数值log_X,这是因为在实际计算中,概率密度函数的值通常非常小,可能会导致数值下溢或上溢。因此,我们通常会使用对数值来计算积分,这样可以避免数值问题,并且可以更好地处理概率密度函数的乘积和积分。

嵌套采样算法是一种非常有效的统计推断算法,可以用于计算复杂概率分布下的积分或求和。它的主要思想是将参数空间分解为多个体积相等的超立方体,然后通过随机采样和“推出”超立方体的方式来不断迭代,从而得到高精度的积分值和参数空间的边界。嵌套采样算法在天文学、统计学、物理学、生物学等领域的数据分析和模型比较中被广泛应用。

相关专题

更多
页面置换算法
页面置换算法

页面置换算法是操作系统中用来决定在内存中哪些页面应该被换出以便为新的页面提供空间的算法。本专题为大家提供页面置换算法的相关文章,大家可以免费体验。

392

2023.08.14

数据分析的方法
数据分析的方法

数据分析的方法有:对比分析法,分组分析法,预测分析法,漏斗分析法,AB测试分析法,象限分析法,公式拆解法,可行域分析法,二八分析法,假设性分析法。php中文网为大家带来了数据分析的相关知识、以及相关文章等内容。

456

2023.07.04

数据分析方法有哪几种
数据分析方法有哪几种

数据分析方法有:1、描述性统计分析;2、探索性数据分析;3、假设检验;4、回归分析;5、聚类分析。本专题为大家提供数据分析方法的相关的文章、下载、课程内容,供大家免费下载体验。

272

2023.08.07

网站建设功能有哪些
网站建设功能有哪些

网站建设功能包括信息发布、内容管理、用户管理、搜索引擎优化、网站安全、数据分析、网站推广、响应式设计、社交媒体整合和电子商务等功能。这些功能可以帮助网站管理员创建一个具有吸引力、可用性和商业价值的网站,实现网站的目标。

719

2023.10.16

数据分析网站推荐
数据分析网站推荐

数据分析网站推荐:1、商业数据分析论坛;2、人大经济论坛-计量经济学与统计区;3、中国统计论坛;4、数据挖掘学习交流论坛;5、数据分析论坛;6、网站数据分析;7、数据分析;8、数据挖掘研究院;9、S-PLUS、R统计论坛。想了解更多数据分析的相关内容,可以阅读本专题下面的文章。

500

2024.03.13

Python 数据分析处理
Python 数据分析处理

本专题聚焦 Python 在数据分析领域的应用,系统讲解 Pandas、NumPy 的数据清洗、处理、分析与统计方法,并结合数据可视化、销售分析、科研数据处理等实战案例,帮助学员掌握使用 Python 高效进行数据分析与决策支持的核心技能。

71

2025.09.08

Python 数据分析与可视化
Python 数据分析与可视化

本专题聚焦 Python 在数据分析与可视化领域的核心应用,系统讲解数据清洗、数据统计、Pandas 数据操作、NumPy 数组处理、Matplotlib 与 Seaborn 可视化技巧等内容。通过实战案例(如销售数据分析、用户行为可视化、趋势图与热力图绘制),帮助学习者掌握 从原始数据到可视化报告的完整分析能力。

55

2025.10.14

python设置中文版教程合集
python设置中文版教程合集

本专题整合了python改成中文版相关教程,阅读专题下面的文章了解更多详细内容。

0

2026.01.05

从零到实战:Python 编程系统入门专题
从零到实战:Python 编程系统入门专题

本专题面向零编程基础及初学者,系统讲解 Python 编程语言的核心知识与实战技巧。内容涵盖 Python 基础语法、数据结构、函数与模块、常用标准库、简单算法思维,以及真实应用场景下的小项目实战。通过循序渐进的学习路径,帮助读者快速建立编程思维,掌握 Python 在数据处理、自动化脚本及日常开发中的实际应用能力,为后续深入学习 Web 开发、数据分析或人工智能打下坚实基础。

10

2026.01.05

热门下载

更多
网站特效
/
网站源码
/
网站素材
/
前端模板

精品课程

更多
相关推荐
/
热门推荐
/
最新课程
麻省理工大佬Python课程
麻省理工大佬Python课程

共34课时 | 5万人学习

国外Web开发全栈课程全集
国外Web开发全栈课程全集

共12课时 | 0.9万人学习

关于我们 免责申明 举报中心 意见反馈 讲师合作 广告合作 最新更新
php中文网:公益在线php培训,帮助PHP学习者快速成长!
关注服务号 技术交流群
PHP中文网订阅号
每天精选资源文章推送

Copyright 2014-2026 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号