0

0

优化和应用于多任务学习的机器学习方法

WBOY

WBOY

发布时间:2024-01-23 14:57:13

|

1525人浏览过

|

来源于网易伏羲

转载

☞☞☞AI 智能聊天, 问答助手, AI 智能搜索, 免费无限量使用 DeepSeek R1 模型☜☜☜

机器学习中的多任务学习优化和用例

多任务学习是一种针对多个任务联合优化的模型,其中相关任务共享表示,并通过在原始任务上学习更好的决策边界来提高模型性能。通常使用单个神经网络来同时解决多个任务。除了减少推理时间外,联合解决任务组还具有其他好处,如提高预测准确性、提高数据效率和减少训练时间。

什么是多任务学习模型?

多任务学习是指一个机器学习模型可以同时处理多个不同的任务。它能够提高数据利用效率,加快模型收敛速度,并且减少过度拟合的问题,这是因为模型可以共享表示。

多任务学习与人类学习机制更相似,因为人类常常学习可转移的技能。比如,学会骑自行车后,学习骑摩托车就更容易。这被称为知识的归纳转移。

这种知识转移机制允许人类仅通过少量示例或没有示例来学习新概念,分别被称为机器学习中的"小样本学习"和"零样本学习"。

多任务学习的优化方法

并非所有任务都是相关的,数据集的不平衡、任务之间的差异、知识的负迁移,都对多任务学习提出了挑战。因此,任务的优化与选择合适的架构一样重要。接下来我们讨论多任务学习的优化策略。

1.损失建设

这是执行多任务优化的最直观方法之一,通过使用不同的加权方案平衡为单独任务定义的单个损失函数。该模型然后优化聚合损失函数,作为一次学习多个任务的一种方式。

比如使用不同的损失加权机制来帮助解决多任务问题。具体为各个损失函数分配的权重与各个任务的训练集大小成反比,以免让具有更多数据的任务主导优化。

2.硬参数共享

在硬参数共享中,神经网络的隐藏层被共享,同时保留一些特定于任务的输出层。为相关任务共享大部分层可以减少过度拟合的可能性。

共享模型同时学习的任务越多,就越需要找到一个能够捕获所有任务的表示,并且原始任务过度拟合的可能性就越小。

3.软参数共享

仅当任务密切相关时,硬参数共享才会表现良好。因此,软参数共享的重点是学习需要在任务之间共享的特征。软参数共享是指将各个模型的参数与整体训练目标之间的距离进行正则化,以鼓励不同任务之间使用相似的模型参数。它常用于多任务学习,因为这种正则化技术易于实现。

4.数据采样

机器学习数据集经常受到数据分布不平衡的影响,多任务学习使这个问题进一步复杂化。因为涉及具有不同大小和数据分布的多任务训练数据集。多任务模型更有可能从具有更大可用训练数据集的任务中采样数据点,从而导致潜在的过拟合。

为了处理这种数据不平衡,已经提出了各种数据采样技术来为多任务优化问题正确构建训练数据集。

5.智能任务调度

大多数多任务学习模型以非常简单的方式决定在一个时期内训练哪些任务,要么在每一步训练所有任务,要么随机抽取一部分任务进行训练。然而,智能优化的任务调度可以显着提高所有任务的整体模型性能。

6.梯度调制

大多数多任务学习方法都假设联合优化的各个任务密切相关。但是,每个任务并不一定会与所有可用任务密切相关。在这种情况下,与不相关的任务共享信息甚至可能会损害性能,这种现象称为“负迁移”。

mallcloud商城
mallcloud商城

mallcloud商城基于SpringBoot2.x、SpringCloud和SpringCloudAlibaba并采用前后端分离vue的企业级微服务敏捷开发系统架构。并引入组件化的思想实现高内聚低耦合,项目代码简洁注释丰富上手容易,适合学习和企业中使用。真正实现了基于RBAC、jwt和oauth2的无状态统一权限认证的解决方案,面向互联网设计同时适合B端和C端用户,支持CI/CD多环境部署,并提

下载

从优化的角度来看,负迁移表现为存在冲突的任务梯度。当两个任务的梯度向量指向相反的方向时,当前任务的梯度会降低另一个任务的性能。遵循两个梯度的平均值意味着这两个任务都没有看到与单任务训练设置相同的改进。因此,任务梯度的调制是解决这个问题的潜在方法。

如果一个多任务模型在一组相关任务上进行训练,那么理想情况下,这些任务的梯度应该指向相似的方向。一种常见的梯度调制方式是通过对抗训练完成的。例如,梯度对抗训练(GREAT)方法通过在多任务模型训练中包含一个对抗性损失项来明确强制执行此条件,该训练鼓励来自不同来源的梯度具有统计上无法区分的分布。

7.知识蒸馏

知识蒸馏是一种机器学习范例,其中知识从计算量大的模型(“教师”模型)转移到较小的模型(“学生”模型),同时保持性能。

在多任务学习中,知识蒸馏最常见的用途是将知识从几个单独的单任务“教师”网络中提取到一个多任务“学生”网络中。有趣的是,学生网络的性能已被证明在某些领域超过了教师网络,这使得知识蒸馏成为一种理想的方法,不仅可以节省内存,还可以提高性能。

多任务学习的实际应用

人工智能所有领域的研究人员都使用多任务学习框架来开发资源优化模型,可靠的多任务模型可用于具有存储限制的多个应用领域,下面让我们看看这些模型在人工智能不同领域的最新应用。

1.计算机视觉

计算机视觉是人工智能的一个分支,处理图像分类、对象检测、视频检索等问题。大多数单任务计算机视觉模型的计算成本都非常高,使用多任务网络处理多个任务可以节省存储空间,并使其更容易部署在更多现实世界的问题中。此外,它有助于缓解模型训练需要大量标记数据的问题。

2.自然语言处理

自然语言处理(NLP)是人工智能的一个分支,处理自然的人类语言提示文本(任何语言)、语音等。它包括句子翻译、图像或视频字幕、情绪检测等多种应用。多任务学习广泛用于NLP问题,以通过辅助任务提高主要任务的性能。

3.推荐系统

个性化推荐已经成为帮助用户处理海量在线内容的主要技术。为了提高用户体验,推荐模型必须准确预测用户对物品的个人偏好。

多任务推荐系统的例子是CAML模型,该模型通过紧密耦合推​​荐任务和解释任务来提高可解释推荐的准确性和可解释性。

4.强化学习

强化学习是深度学习的范例,介于监督学习和无监督学习之间。在这种学习方案中,算法通过反复试验做出决策来学习,正确的决策会得到奖励,错误的决策会受到惩罚。它通常用于机器人应用。

由于许多强化学习问题不一定涉及复杂的感知,例如使用文字或像素,因此许多此类问题的架构要求并不高。因此,许多用于强化学习的深度网络都是简单的全连接、卷积或循环架构。然而,在多任务情况下,可利用任务之间的信息为强化学习创建改进的架构。

如CARE模型,使用混合编码器将输入观察编码为多种表示,对应于不同的技能或对象。然后允许学习代理使用上下文来决定它对任何给定任务使用哪种表示,从而使代理可以细粒度地控制跨任务共享哪些信息,从而减轻负迁移问题。

5.多模式学习

顾名思义,多模态学习涉及在多种数据模态,如音频、图像、视频、自然文本等上训练模型,这些模态可能相关也可能不相关。多任务学习广泛用于将多模态特征隐式注入单个模型。

相关专题

更多
页面置换算法
页面置换算法

页面置换算法是操作系统中用来决定在内存中哪些页面应该被换出以便为新的页面提供空间的算法。本专题为大家提供页面置换算法的相关文章,大家可以免费体验。

402

2023.08.14

人工智能在生活中的应用
人工智能在生活中的应用

人工智能在生活中的应用有语音助手、无人驾驶、金融服务、医疗诊断、智能家居、智能推荐、自然语言处理和游戏设计等。本专题为大家提供人工智能相关的文章、下载、课程内容,供大家免费下载体验。

410

2023.08.17

人工智能的基本概念是什么
人工智能的基本概念是什么

人工智能的英文缩写为AI,是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学;该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。本专题为大家提供相关的文章、下载、课程内容,供大家免费下载体验。

300

2024.01.09

人工智能不能取代人类的原因是什么
人工智能不能取代人类的原因是什么

人工智能不能取代人类的原因包括情感与意识、创造力与想象力、伦理与道德、社会交往与沟通能力、灵活性与适应性、持续学习和自我提升等。本专题为大家提供相关的文章、下载、课程内容,供大家免费下载体验。

628

2024.09.10

Python 人工智能
Python 人工智能

本专题聚焦 Python 在人工智能与机器学习领域的核心应用,系统讲解数据预处理、特征工程、监督与无监督学习、模型训练与评估、超参数调优等关键知识。通过实战案例(如房价预测、图像分类、文本情感分析),帮助学习者全面掌握 Python 机器学习模型的构建与实战能力。

33

2025.10.21

高德地图升级方法汇总
高德地图升级方法汇总

本专题整合了高德地图升级相关教程,阅读专题下面的文章了解更多详细内容。

9

2026.01.16

全民K歌得高分教程大全
全民K歌得高分教程大全

本专题整合了全民K歌得高分技巧汇总,阅读专题下面的文章了解更多详细内容。

21

2026.01.16

C++ 单元测试与代码质量保障
C++ 单元测试与代码质量保障

本专题系统讲解 C++ 在单元测试与代码质量保障方面的实战方法,包括测试驱动开发理念、Google Test/Google Mock 的使用、测试用例设计、边界条件验证、持续集成中的自动化测试流程,以及常见代码质量问题的发现与修复。通过工程化示例,帮助开发者建立 可测试、可维护、高质量的 C++ 项目体系。

13

2026.01.16

java数据库连接教程大全
java数据库连接教程大全

本专题整合了java数据库连接相关教程,阅读专题下面的文章了解更多详细内容。

33

2026.01.15

热门下载

更多
网站特效
/
网站源码
/
网站素材
/
前端模板

精品课程

更多
相关推荐
/
热门推荐
/
最新课程
Node.js 教程
Node.js 教程

共57课时 | 8.6万人学习

CSS3 教程
CSS3 教程

共18课时 | 4.6万人学习

Rust 教程
Rust 教程

共28课时 | 4.4万人学习

关于我们 免责申明 举报中心 意见反馈 讲师合作 广告合作 最新更新
php中文网:公益在线php培训,帮助PHP学习者快速成长!
关注服务号 技术交流群
PHP中文网订阅号
每天精选资源文章推送

Copyright 2014-2026 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号