自训练的概念及其与半监督学习的联系

WBOY
发布: 2024-01-23 17:15:05
转载
898人浏览过

☞☞☞AI 智能聊天, 问答助手, AI 智能搜索, 免费无限量使用 DeepSeek R1 模型☜☜☜

什么是自训练?自训练和半监督有什么关系

自训练是一种半监督分类方法,包括平滑度和聚类假设。因此,它也被称为自标记或决策导向学习。

通常,当标记的数据集包含大量关于数据生成过程的信息,并且未标记的样本仅用于微调算法时,自训练是一个不错的选择。

然而,当这些条件不满足时,自训练的结果就不理想。因此自训练在很大程度上取决于标记样本。

自训练的每一步会根据当前决策函数对未标记数据进行标记,并使用预测进行重新训练。

自训练的工作原理

自训练算法以拟合另一个先前学习的监督模型预测的伪标签。

自训练有这几个关键点

数据实例分为训练集和测试集,分类算法训练在标记训练数据上。评估数据点,使用置信向量表示预测结果。

AI大学堂
AI大学堂

科大讯飞打造的AI学习平台

AI大学堂 87
查看详情 AI大学堂

2、选择与最大置信度相关的前K个值并将其添加到标记数据集中。

3、分类器预测标记测试数据实例的类别标签,并使用选择的指标评估分类器性能。

4、分类器使用新的标记数据集重新训练。

自训练利用标记数据集的结构来发现合适的分离超曲面。在这个过程之后,对未标记的样本进行评估,并将具有足够大置信度的分类点包含在新的训练集中,自训练算法会重复这个过程,直到每个数据点都被分类。

以上就是自训练的概念及其与半监督学习的联系的详细内容,更多请关注php中文网其它相关文章!

相关标签:
最佳 Windows 性能的顶级免费优化软件
最佳 Windows 性能的顶级免费优化软件

每个人都需要一台速度更快、更稳定的 PC。随着时间的推移,垃圾文件、旧注册表数据和不必要的后台进程会占用资源并降低性能。幸运的是,许多工具可以让 Windows 保持平稳运行。

下载
来源:网易伏羲网
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn
最新问题
开源免费商场系统广告
热门教程
更多>
最新下载
更多>
网站特效
网站源码
网站素材
前端模板
关于我们 免责申明 意见反馈 讲师合作 广告合作 最新更新 English
php中文网:公益在线php培训,帮助PHP学习者快速成长!
关注服务号 技术交流群
PHP中文网订阅号
每天精选资源文章推送
PHP中文网APP
随时随地碎片化学习

Copyright 2014-2025 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号